Skip to main content
Log in

Dynamics of Diffraction Efficiency of Superimposed Volume Reflection Holograms at Their Simultaneous Recording in Photopolymer Material

  • Published:
Optoelectronics, Instrumentation and Data Processing Aims and scope

Abstract

The new experimental data on the dynamics of diffraction efficiency (DE) of superimposed volume reflection holograms with a grating period of \({\sim}\)250 nm is obtained at their simultaneous recording in the photopolymer material BAYFOL HX TP. The character and parameters of their interaction are established when exposure of one hologram is delayed relative to the other one. It is revealed that the DE dynamics is practically not affected by variations in diffusion time of monomer in the range \(0.12<t_{D}<0.17\) s, but the transient behavior of the photopolymerization parameter \(\tau_{p}\), which increased in our experiments from 5 to 15 s, becomes considerably visible. The well-known equations of the photoinduced variation in the photopolymer refraction index are improved with account for the character of variation in the parameter \(\tau_{p}\). The calculated dependences of DE dynamics obtained with refined formulas are in good agreement with experimental data (mean square deviation is \({\sim}2\%\)).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

REFERENCES

  1. L. Dhar, K. Curtis, M. Tackitt, M. Schilling, S. Campbell, W. Wilson, A. Hill, C. Boyd, N. Levinos, and A. Harris, ‘‘Holographic storage of multiple high-capacity digital data pages in thick photopolymer systems,’’ Opt. Lett. 23, 1710–1712 (1998). https://doi.org/10.1364/OL.23.001710

    Article  ADS  Google Scholar 

  2. F.-K. Bruder, H. Bang, T. Fäcke, R. Hagen, D. Hönel, E. Orselli, Ch. Rewitz, T. Rölle, D. Vukicevic, and G. Walze, ‘‘Precision holographic optical elements in bayfol HX photopolymer,’’ Proc. SPIE 9771, 977103 (2016). https://doi.org/10.1117/12.2209636

    Article  Google Scholar 

  3. M. Watanabe, T. Matsuyama, D. Kodama, and T. Hotta, ‘‘Mass-produced color graphic arts holograms,’’ Proc. SPIE 3637, 204–212 (1999). https://doi.org/10.1117/12.343773

    Article  ADS  Google Scholar 

  4. F.-K. Bruder, T. Fäcke, and T. Rölle, ‘‘The chemistry and physics of bayfol HX film holographic photopolymer,’’ Polymers 9, 472–494 (2017). https://doi.org/10.3390/polym9100472

    Article  Google Scholar 

  5. G. Zhao and P. Mouroulis, ‘‘Diffusion model of hologram formation in dry photopolymer materials,’’ J. Mod. Opt. 41, 1929–1939 (1994). https://doi.org/10.1080/09500349414551831

    Article  ADS  Google Scholar 

  6. J. T. Sheridan and J. R. Lawrence, ‘‘Nonlocal-response diffusion model of holographic recording in photopolymer,’’ J. Opt. Soc. Am. A 17, 1108–1114 (2000). https://doi.org/10.1364/JOSAA.17.001108

    Article  ADS  Google Scholar 

  7. M. R.Gleeson and J. T. Sheridan, ‘‘A review of the modeling of free-radical photopolymerization in the formation of holographic gratings,’’ J. Opt. A.: Pure Appl. Opt. 11, 024008 (2009). https://doi.org/10.1088/1464-4258/11/2/024008

    Article  ADS  Google Scholar 

  8. F.-K. Bruder, F. Deuber, T. Fäcke, R. Hagen, D. Hönel, D. Jurbergs, T. Rölle, and M.-S. Weiser, ‘‘Reaction-diffusion model applied to high resolution BayfolR HX photopolymer,’’ Proc. SPIE 7619, 76190I (2010). https://doi.org/10.1117/12.841956

    Article  Google Scholar 

  9. S. Piazzolla and B. K. Jenkins, ‘‘Dynamics during holographic exposure in photopolymers for single and multiplexed gratings,’’ J. Mod. Opt. 46, 2079–2110 (1999). https://doi.org/10.1080/09500349908231394

    Article  ADS  Google Scholar 

  10. S. Piazzolla and B. K. Jenkins, ‘‘First-harmonic diffusion model for holographic grating formation in photopolymers,’’ J. Opt. Soc. Am. B 17, 1147–1157 (2000). https://doi.org/10.1364/JOSAB.17.001147

    Article  ADS  Google Scholar 

  11. V. V. Shelkovnikov, E. V. Vasil’ev, T. N. Gerasimova, E. F. Pen, and A. I. Plekhanov, ‘‘Dynamics of pulsed recording of holographic diffraction gratings in photopolymer materials,’’ Opt. Spectrosc. 99, 806–815 (2005). https://doi.org/10.1134/1.2135860

    Article  ADS  Google Scholar 

  12. D. Jurbergs, F. Bruder, F. Deuber, T. Fäcke, R. Hagen, D. Hönel, T. Rölle, M.-S. Weiser, and A. Volkov, ‘‘New recording materials for the holographic industry,’’ Proc. SPIE 7233, 72330K (2009). https://doi.org/10.1117/12.809579

    Article  Google Scholar 

  13. Yu. N. Denisyuk, ‘‘The imaging of the optical properties of an object in a wave field of radiation scattered by it,’’ Opt. Spectrosc. 15, 271 (1963).

    Google Scholar 

  14. S. A. Babin, E. V. Vasil’ev, V. I. Kovalevskii, E. F. Pen, A. I. Plekhanov, and V. V. Shelkovnikov, ‘‘Methods and devices for testing holographic photopolymer materials,’’ Avtometriya 39 (2), 57–70 (2003).

    Google Scholar 

  15. E. F. Pen, RF Patent No. 165622, Byull., No. 30 (2016).

  16. M. Moothanchery, I. Naydenova, and V. Toal, ‘‘Study of the shrinkage caused by holographic grating formation in acrylamide based photopolymer film,’’ Opt. Express 19, 13395–13404 (2011). https://doi.org/10.1364/OE.19.013395

    Article  ADS  Google Scholar 

  17. W. K. Smothers, B. M. Monroe, A. M. Weber, and D. E. Keys, ‘‘Photopolymers for holography,’’ Proc. SPIE 1212, 20–29 (1990). https://doi.org/10.1117/12.17963

    Article  ADS  Google Scholar 

  18. M. R. Gleeson, J. V. Kelly, C. E. Close, F. T. O’Neill, and J. T. Sheridan, ‘‘Effects of absorption and inhibition during grating formation in photopolymer materials,’’ J. Opt. Soc. Am. B 23, 2079–2088 (2006). https://doi.org/10.1364/JOSAB.23.002079

    Article  ADS  Google Scholar 

  19. H. Kogelnik, ‘‘Coupled wave theory for thick hologram gratings,’’ Bell Syst. Tech. J. 48, 2909–2947 (1969). https://doi.org/10.1002/j.1538-7305.1969.tb01198.x

    Article  ADS  Google Scholar 

  20. M. R. Gleeson, S. Liu, and J. T. Sheridan, ‘‘Improvement of photopolymer materials for holographic data storage,’’ J. Mater. Sci. 44, 6090–6099 (2009). https://doi.org/10.1007/s10853-009-3840-x

    Article  ADS  Google Scholar 

  21. J. Guo, M. R. Gleeson, S. Liu, and J. T. Sheridan, ‘‘Analysis of the effects of viscosity, volume, and temperature in photopolymer material for holographic applications,’’ Proc. SPIE 8776, 87760J (2013). https://doi.org/10.1117/12.2018330

    Article  Google Scholar 

  22. M. R. Gleeson, Sh. Liu, R. R. McLeod, et al., ‘‘Nonlocal photopolymerization kinetics including multiple termination mechanisms and dark reactions. Part II. Experimental validation,’’ J. Opt. Soc. Am. B 26, 1746–1754 (2009). https://doi.org/10.1364/JOSAB.26.001746

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The author thanks E. V. Vasil’ev for fruitful discussion of the investigation results.

Funding

The work is supported by the Ministry of Science and Higher Education of the Russian Federation (state registration no. AAAA-A17-117053110007-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. F. Pen.

Additional information

Translated by E. Oborin

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pen, E.F. Dynamics of Diffraction Efficiency of Superimposed Volume Reflection Holograms at Their Simultaneous Recording in Photopolymer Material. Optoelectron.Instrument.Proc. 56, 340–349 (2020). https://doi.org/10.3103/S875669902004010X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S875669902004010X

Keywords:

Navigation