Skip to main content
Log in

Control and Positioning System for Reflector of ‘‘Millimetron’’ Observatory: Design and Development

  • Published:
Optoelectronics, Instrumentation and Data Processing Aims and scope

Abstract

We propose a method to control the multi-element mirror system of the telescope of the space observatory ‘‘Millimetron’’ under its tuning taking place after the opening on the orbit. For the preliminary control of the location of reflector elements, the laser rangefinder is used; for the final control, the optical method of the Foucault knife is used. We compute the optical scheme of the control system for the final tuning of the telescope and present it. We show simulation results for images obtained under deviations of reflector elements. We present computation results for the optical system, implementing the Foucault knife method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

REFERENCES

  1. International space VLBI project RadioAstron. http://www.asc.rssi.ru/radioastron/rus/index.html. Cited April 13, 2020.

  2. Hubble Space Telescope. https://www.nasa.gov/mission_pages/hubble/main/index.html. Cited April 13, 2020.

  3. James Webb space telescope Goddard space flight center. https://www.jwst.nasa.gov/. Cited April 13, 2020.

  4. Herschel science centre home. http://herschel.esac.esa.int/. Cited April 13, 2020.

  5. Millimetron space observatory. http://millimetron.ru/index.php/ru/. Cited April 13, 2020.

  6. N. N. Michelson, The Optics of Astronomical Telescopes and Methods of Calculating It (Fizmatlit, Moscow, 1995).

    Google Scholar 

  7. N. S. Kardashev, I. D. Novikov, V. N. Lukash, et al., ‘‘Review of scientific topics for the Millimetron space observatory,’’ https://doi.org/10.3367/UFNe.0184.201412c.1319

  8. P. S. Zyryanova, A. V. Usoltsev, A. V. Kozlov, et al., ‘‘Processing and setting the support system of a large-sized reflector,’’ in Reshetnevskie Chtenia: Mat. XXI Int. Sci. Conf. Part 1, Krasnoyarsk, 2017, pp. 125–126.

  9. E. A. Vitrichenko, Methods of Studying Astronomical Optics (Nauka, Moscow, 1980).

    Google Scholar 

  10. V. V. Lavrinov, L. N. Lavrinova, and M. V. Tuev, ‘‘Wavefront reconstruction based on the results of light-field conversion by a Shack-Hartmann sensor,’’ Optoelectron., Instrum. Data Process. 49, 305–312 (2013). https://doi.org/10.3103/S8756699013030138

    Article  Google Scholar 

  11. P. A. Bakut, M. V. Kuznetsov, S. D. Pol’skikh, K. N. Sviridov, and N. Yu. Khomich, RF Patent No. 2036491, Byull., No. 15 (1995).

  12. R. K. Nasyrov and A. G. Poleshchuk, ‘‘Manufacturing and certification of a diffraction corrector for controlling the surface shape of the six-meter main mirror of the Big Azimuthal Telescope of the Russian Academy of Sciences,’’ Optoelectron., Instrum. Data Process. 53, 517–523 (2017). https://doi.org/10.3103/S8756699017050119

    Article  ADS  Google Scholar 

  13. Yu. A. Kolomiitsov, Interferometers. Foundations of Engineering Theory, Application (Mashinostroenie, Leningrad, 1976).

    Google Scholar 

  14. D. T. Puryaev, Methods of Controlling Optical Aspherical Surfaces (Mashinostroenie, Moscow, 1976).

    Google Scholar 

  15. L. L. Sikoruk, Telescopes for Amateur Astronomers (Nauka, Moscow, 1982).

    Google Scholar 

  16. Zh. Vokuler and Zh. Teksero, Photography of Celestial Bodies (for Amateur Astronomers) (Nauka, Moscow, 1967).

    Google Scholar 

  17. D. D. Maksutov, Fabrication and Investigation of Astronomical Optics (Nauka, Moscow, 1984).

    Google Scholar 

  18. A. V. Budancev, A. G. Verkhogliad, S. N. Makarov, Yu. V. Chugui, V. M. Mikhalkin, and V. I. Khalimanovich, in Reshetnevskie Chtenia: Mat. Int. Sci. Conf. Part 1, Krasnoyarsk, 2011, pp. 46–47.

  19. S. N. Makarov and I. S. Glebus, ‘‘Development of the basic channel of a coherent laser range finder,’’ in Sb. Mat. Int. Sci. Conf. Interexpo Geo-Siberia, Novosibirsk, 2012, pp. 91–97.

  20. A. G. Verkhogliad, I. S. Glebus, S. N. Makarov, V. M. Mikhalkin, and V. I. Khalimanovich, ‘‘Testing space observatory Millimetron telescope mirror system on board of the spacecraft,’’ in Reshetnevskie Chtenia: Mat. Int. Sci. Conf. Part 1, Krasnoyarsk, 2017, pp. 98–100.

  21. E. S. Zhimuleva, P. S. Zavyalov, and M. S. Kravchenko, ‘‘Development of telecentric objectives for dimensional inspection systems,’’ Optoelectron., Instrum. Data Process. 54, 52–60 (2018). https://doi.org/10.3103/S8756699018010090

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to P. S. Zavyalov, M. S. Kravchenko or E. S. Zhimuleva.

Additional information

Translated by A. Muravnik

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zavyalov, P.S., Kravchenko, M.S. & Zhimuleva, E.S. Control and Positioning System for Reflector of ‘‘Millimetron’’ Observatory: Design and Development. Optoelectron.Instrument.Proc. 56, 356–367 (2020). https://doi.org/10.3103/S8756699020040159

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S8756699020040159

Keywords:

Navigation