Skip to main content
Log in

Morphological evolution and spreading flow of hollow oil droplet impact on a heated wall

  • Review Article
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

A coupled level set and volume–of–fraction method is applied to investigate hollow oil droplet impacts on heated walls. Results show that given the increase in impact velocity, three evolutionary processes of spreading, transition, and central jet occur after the hollow oil droplet impact on a heated wall. The variation in the spreading length of hollow oil droplets is similar in different evolutionary processes, but the variation in the center height of hollow oil droplets is relatively different. The wall heat flux and the position of the maximum heat flux increase with impact velocity. In addition, the wall temperature influences the flow and heat transfer characteristics of the hollow oil droplet impingement. Considering the viscosity–temperature characteristics of the lubricating oil, the spreading length of the hollow oil droplet increases with the wall temperature, but the central height of the hollow oil droplet is unaffected by the wall surface temperature. The wall heat flux and the position of the maximum heat flux also increase with the impact velocity. Pressure and velocity distribution indicate that the bubble rupture at the central jet originates from the combined effect of inertial force and surface tension. The results of this study provide a basis for an improved understanding of the flow and heat transfer characteristics of hollow oil droplet impact on a heated wall and serve as a theoretical reference for investigating the effect of bubbles on oil–gas lubrication processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

A :

Constant related to lubricant oil

B :

Constant related to lubricant oil

D :

Hollow oil droplet diameter, \(\upmu \)m

\(D_{\mathrm{b}}\) :

Bubble diameter, \(\upmu \)m

\(D_{\mathrm{h}}\) :

Central height, \(\upmu \)m

\(D_{\mathrm{s}}\) :

Spreading diameter, \(\upmu \)m

\({{\varvec{F}}}\) :

Surface tension, N \({\mathrm{m}}^{-1}\)

f :

Spreading factor

\({{\varvec{g}}}\) :

Gravity, \({\mathrm{m}}\,{\mathrm{s}}^{-2}\)

H:

Heaviside function

h :

Central height factor

L:

Height of central jet, mm

\({{\varvec{n}}}\) :

Normal vector

P :

Pressure, Pa

q:

Heat flux, Mw \({\mathrm{m}}^{-2}\)

T :

Degree celsius, \(^{\circ }\hbox {C}\)

\(T_{\mathrm{w}}\) :

Wall temperature, K

t :

Time, \(\upmu \)s

\({{\varvec{U}}}\) :

Velocity vector, m \({\mathrm{s}}^{-1}\)

\(\sigma \) :

Surface tension coefficient

\(\mu \) :

Kinetic viscosity, \(\hbox {Pa s}^{-1}\)

\(\Phi \) :

Level set function

k :

Interface curvature

\(c_{\mathrm{p}}\) :

Specific heat, J kg\(^{-1}\) K\(^{-1}\)

\(\lambda \) :

Thermal conductivity, W \(\mathrm{m}^{-2}\) K\(^{-1}\)

\(\hat{n}_{\mathrm{w}}\) :

Unit vectors normal to the wall

\(\hat{\tau }_{\mathrm{w}}\) :

Unit vectors tangential to the wall

\(\theta _{\mathrm{w}}\) :

Contact angle, \(^\circ \)

*:

Dimensionless

g:

Gas phase

l:

Liquid phase

\(\partial \) :

Partial differential operator

\(\nabla \) :

Del operator

\(\Delta \) :

Difference between two quantities of a variable

References

  1. Wang, J.W., An, Q.: Investigation of two-phase flow regimes in transport pipe in oil–air lubrication system. J. East China Univ. Sci. Technol. (Natural Science Edition) 35, 324–327 (2009)

    Article  Google Scholar 

  2. Yarin, A.L.: Drop impact dynamics: splashing, spreading, receding, bouncing. Annu. Rev. Fluid Mech. 38, 159–192 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Josserand, C., Thoroddsen, S.T.: Drop impact on a solid surface. Annu. Rev. Fluid Mech. 48, 365–391 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  4. Liang, G., Mudawar, I.: Review of drop impact on heated walls. Int. J. Heat Mass Transf. 106, 103–126 (2017)

    Article  Google Scholar 

  5. Yao, Y., Li, C., Zhang, H., Yang, R.: Modelling the impact, spreading and freezing of a water droplet on horizontal and inclined superhydrophobic cooled surfaces. Appl. Surf. Sci. 419, 52–62 (2017)

    Article  Google Scholar 

  6. Kannan, R., Sivakumar, D.: Impact of liquid drops on a rough surface comprising microgrooves. Exp. Fluids 44, 927–938 (2008)

    Article  Google Scholar 

  7. Okawa, T., Shiraishi, T., Mori, T.: Production of secondary drops during the single water drop impact onto a plane water surface. Exp. Fluids 41, 965–974 (2006)

    Article  Google Scholar 

  8. Rioboo, R., Marengo, M., Tropea, C.: Time evolution of liquid drop impact onto solid, dry surfaces. Exp. Fluids 33, 112–124 (2002)

    Article  Google Scholar 

  9. Bartolo, D., Josserand, C., Bonn, D.: Retraction dynamics of aqueous drops upon impact on nonwetting surfaces. J. Fluid Mech. 545, 329–338 (2005)

    Article  MATH  Google Scholar 

  10. Pan, K.L., Tseng, K.C., Wang, C.H.: Breakup of a droplet at high velocity impacting a solid surface. Exp. Fluids 48, 143–156 (2010)

    Article  Google Scholar 

  11. Mao, T., Kuhn, D.C.S., Tran, H.: Spread and rebound of liquid droplets upon impact on flat surfaces. Aiche J. 43, 2169–2179 (1997)

    Article  Google Scholar 

  12. Chandra, S., Avedisian, C.T.: On the collision of a droplet with a solid surface. Proc. R. Soc. A Math. Phys. Eng. Sci. 432, 13–41 (1991)

    Google Scholar 

  13. Ko, Y.S., Chung, S.H.: An experiment on the breakup of impinging droplets on a hot surface. Exp. Fluids 21, 118–123 (1996)

    Article  Google Scholar 

  14. Gurrala, P., Katre, P., Balusamy, S., Banerjee, S., Sahu, K.C.: Evaporation of ethanol-water sessile droplet of different compositions at an elevated substrate temperature. Int. J. Heat Mass Transf. 145, 118770 (2019)

    Article  Google Scholar 

  15. Gottfried, B.S., Bell, K.J.: Film boiling of spheroidal droplets. Leidenfrost phenomenon. Ind. Eng. Chem. Fundam. 5, 561–568 (1966)

    Article  Google Scholar 

  16. Katre, P., Gurrala, P., Balusamy, S., Banerjee, S., Sahu, K.C.: Evaporation of sessile ethanol–water droplets on a critically inclined heated surface. Int. J. Multiph. Flow 131, 103368 (2020)

    Article  MathSciNet  Google Scholar 

  17. Wang, A.B., Lin, C.H., Cheng, C.C.: Pattern analysis of a single droplet impinging onto a heated plate. Heat Transf. Asian Res. 34, 579–594 (2005)

    Article  Google Scholar 

  18. Chaves, H., Kubitzek, A.M., Obermeier, F.: Dynamic processes occurring during the spreading of thin liquid films produced by drop impact on hot walls. Int. J. Heat Fluid Flow 20, 470–476 (1999)

    Article  Google Scholar 

  19. Feng, J., Li, X., Bao, Y., Cai, Z., Gao, Z.: Coalescence and conjunction of two in-line bubbles at low Reynolds numbers. Chem. Eng. Sci. 141, 261–270 (2016)

    Article  Google Scholar 

  20. Raman, K.A., Jaiman, R.K., Lee, T.S., Low, H.T.: Lattice Boltzmann study on the dynamics of successive droplets impact on a solid surface. Chem. Eng. Sci. 145, 181–195 (2016)

    Article  Google Scholar 

  21. Zhang, L., Chen, X.X., Tao, K., Song, Y., Zhang, D.: Lattice Boltzmann study of successive droplets impingement on the non-ideal recessed microchannel for high-resolution features. Int. J. Heat Mass Transf. 120, 1085–1100 (2018)

    Article  Google Scholar 

  22. Strotos, G., Gavaises, M., Theodorakakos, A., Bergeles, G.: Numerical investigation of the cooling effectiveness of a droplet impinging on a heated surface. Int. J. Heat Mass Transf. 51, 4728–4742 (2008)

    Article  MATH  Google Scholar 

  23. Nikolopoulos, N., Theodorakakos, A., Bergeles, G.: A numerical investigation of the evaporation process of a liquid droplet impinging onto a hot substrate. Int. J. Heat Mass Transf. 50, 303–319 (2007)

    Article  MATH  Google Scholar 

  24. Yokoi, K., Vadillo, D., Hinch, J., Hutchings, I.: Numerical studies of the influence of the dynamic contact angle on a droplet impacting on a dry surface. Phys. Fluids 21, 072102 (2009)

    Article  MATH  Google Scholar 

  25. Fukai, J., Zhao, Z., Poulikakos, D., Megaridis, C.M., Miyatake, O.: Modeling of the deformation of a liquid droplet impinging upon a flat surface. Phys. Fluids A Fluid Dyn. 5, 2588–2599 (1993)

    Article  MATH  Google Scholar 

  26. Guermond, J.-L., Salgado, A.: A splitting method for incompressible flows with variable density based on a pressure Poisson equation. J. Comput. Phys. 228, 2834–2846 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Caviezel, D., Lakehal, D., Narayanan, C.: Adherence and bouncing of liquid droplets impacting on dry surfaces. Microfluid. Nanofluid. 5, 469–478 (2008)

    Article  Google Scholar 

  28. Bhardwaj, R., Longtin, J.P., Attinger, D.: A numerical investigation on the influence of liquid properties and interfacial heat transfer during microdroplet deposition onto a glass substrate. Int. J. Heat Mass Transf. 50, 2912–2923 (2007)

    Article  MATH  Google Scholar 

  29. Bhardwaj, R., Attinger, D.: Non-isothermal wetting during impact of millimeter size water drop on a flat substrate: numerical investigation and comparison with high speed visualization experiments. Int. J. Heat Fluid Flow 29, 1422–1435 (2008)

    Article  Google Scholar 

  30. Bhardwaj, R., Fang, X., Attinger, D.: Pattern formation during the evaporation of a colloidal nanoliter drop: a numerical and experimental study. New J. Phys. 11, 075020 (2009)

    Article  Google Scholar 

  31. Kobayashi, K., Konno, K., Yaguchi, H., Fujii, H., Sanada, T., Watanabe, M.: Early stage of nanodroplet impact on solid wall. Phys. Fluids 28, 032002 (2016)

    Article  Google Scholar 

  32. Winkels, K.G., Weijs, J.H., Eddi, A., Snoeijer, J.H.: Initial spreading of low-viscosity drops on partially wetting surfaces. Phys. Rev. E. 85, 055301 (2012)

    Article  Google Scholar 

  33. Sedighi, N., Murad, S., Aggarwal, S.K.: Molecular dynamics simulations of spontaneous spreading of a nanodroplet on solid surfaces. Fluid Dyn. Res. 43, 015507 (2011)

    Article  MATH  Google Scholar 

  34. Jiang, T., Lu, L.G., Lu, W.G.: The numerical investigation of spreading process of two viscoelastic droplets impact problem by using an improved SPH scheme. Comput. Mech. 53, 977–999 (2014)

    Article  MathSciNet  Google Scholar 

  35. Zhang, D., Papadikis, K., Gu, S.: Three-dimensional multi-relaxation time lattice-Boltzmann model for the drop impact on a dry surface at large density ratio. Int. J. Multiph. Flow 64, 11–18 (2014)

    Article  MathSciNet  Google Scholar 

  36. Li, D., Zhang, D., Zheng, Z., Tian, X.: Numerical analysis on air entrapment during a droplet impacts on a dry flat surface. Int. J. Heat Mass Transf. 115, 186193 (2017)

    Article  Google Scholar 

  37. Zhang, Y., Ning, Z., Lu, M., Sun, C.: Dynamics of droplet impacting onto heated surface. J. Combust. Sci. Technol. 23, 451–457 (2017)

    Google Scholar 

  38. Sussman, M., Puckett, E.G.: A coupled level set and volume-of-fluid method for computing 3D and axisymmetric incompressible two-phase flows. J. Comput. Phys. 162, 301–307 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  39. Li, D., Duan, X., Zheng, Z., Liu, Y.: Dynamics and heat transfer of a hollow droplet impact on a wetted solid surface. Int. J. Heat Mass Transf. 122, 1014–1023 (2018)

    Article  Google Scholar 

  40. Guo, Y., Wei, L., Liang, G., Shen, S.: Simulation of droplet impact on liquid film with CLSVOF. Int. Commun. Heat Mass Transf. 53, 26–33 (2014)

    Article  Google Scholar 

  41. Gumulya, M., Utikar, R.P., Pareek, V., Mead-Hunter, R., Mitra, S., Evans, G.M.: Evaporation of a droplet on a heated spherical particle. Chem. Eng. J. 278, 309–319 (2015)

    Article  Google Scholar 

  42. Ray, B., Biswas, G., Sharma, A., Welch, S.W.J.: CLSVOF method to study consecutive drop impact on liquid pool. Int. J. Numer. Methods Heat Fluid Flow 23, 143–158 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  43. Gulyaev, I.P., Sonlonenko, O.P.: Hollow droplets impacting onto a solid surface. Exp. Fluids 54, 1432 (2013)

    Article  Google Scholar 

  44. Gulyaev, I.P., Solonenko, O.P., Gulyaev, P.Y., Smirnov, A.V.: Hydrodynamic features of the impact of a hollow spherical drop on a flat surface. Tech. Phys. Lett. 35, 885–888 (2009)

    Article  Google Scholar 

  45. Cherepanov, A.N., Solonenko, O.P., Bublik, V.V.: Numerical and analytic investigation of the dynamics of hollow droplet impact onto substrate. Thermophys. Aeromech. 15, 631–641 (2008)

    Article  Google Scholar 

  46. Zheng, Z., Li, D., Qiu, X., Cui, Y.: Numerical analysis of hollow droplet impact on a flat surface. Acta Phys. Sin. 66, 014704 (2017)

    Article  Google Scholar 

  47. Kumar, A., Gu, S., Kamnis, S.: Simulation of impact of a hollow droplet on a flat surface. Appl. Phys. A 109, 101–109 (2012)

    Article  Google Scholar 

  48. Balla, M., Tripathi, M.K., Sahu, K.C.: A numerical study of a hollow water droplet falling in air. Theor. Comput. Fluid Dyn. 34, 133–144 (2020)

    Article  MathSciNet  Google Scholar 

  49. Deka, H., Biswas, G., Sahu, K.C., Kulkarni, Y., Dalal, A.: Coalescence dynamics of a compound drop on a deep liquid pool. J. Fluid Mech. 866(R2), 1–11 (2019)

    MathSciNet  MATH  Google Scholar 

  50. Brackbill, J.U., Kothe, D.B., Zemach, C.: A continuum method for modeling surface tension. J. Comput. Phys. 100, 335–354 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  51. Youngs, D.L.: Numerical Methods for Fluid Dynamics, p. 273285. Academic Press, New York (1982)

    Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Grant nos. 51875152, 51875154, 51975005& 51975174), Anhui Natural Science Foundation (Grant nos. 2008085ME148 & 1908085QE195).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baohong Tong.

Ethics declarations

Conflict of interest

There is no conflict of interest for our research.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tu, Dy., Pan, Qm., Zhou, Jh. et al. Morphological evolution and spreading flow of hollow oil droplet impact on a heated wall. Theor. Comput. Fluid Dyn. 35, 209–227 (2021). https://doi.org/10.1007/s00162-020-00557-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-020-00557-5

Keywords

Navigation