Skip to main content
Log in

A comprehensive and holistic knowledge model for cloud privacy protection

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

Although Cloud computing is gaining popularity by supporting data analysis in an outsourced and cost-effective way, it brings serious privacy issues when sending the original data to Cloud servers. Sensitive data have a significant value, and any infringement of privacy can cause great loss in terms of money and reputation. Thus, for any Cloud ecosystem to be accepted and easily adopted by different stakeholders, privacy concerns are of utmost importance. Users’ discomfort is mainly due to the lack of control over their personal’s data outsourced and processed on the Cloud environment. However, the lack of Cloud data governance and the absence of up-to-date dedicated technologies represent serious barriers to satisfy different Cloud stakeholders’ privacy needs. Consequently, any proposed Cloud platform or technology must consider required technical measures and managerial safeguards to handle sensitive data, to avoid breakdowns, and be intensely investigated by current and future research trends. Several researchers have conducted surveys to understand and target privacy issues in the Cloud. However, their research consists mostly of descriptive literature reviews. In this paper, we propose a holistic and comprehensive taxonomy for Cloud privacy. This study is supported by the results of a systematic literature review, which provides a methodical, structured, and rigorous approach facilitating the understanding of privacy-preserving Cloud strategies and techniques. The study’s objective is to offer a credible intellectual guide for upcoming researchers in Cloud privacy and identify active privacy research areas to make the most impact.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. https://grantome.com/grant/NSF/ACI-1739000.

  2. https://www.darpa.mil/program/programming-computation-on-encrypted-data.

  3. https://www.bu.edu/macs/.

  4. https://www.nsf.gov/awardsearch/showAward?AWD_ID=1838083.

  5. https://www.nsf.gov/awardsearch/showAward?AWD_ID=1010928.

  6. http://www.cs.cornell.edu/Projects/nebula/.

  7. https://prismacloud.eu/.

  8. http://www.clarussecure.eu/.

  9. https://supercloud-project.eu/.

  10. https://cordis.europa.eu/project/id/644814.

References

  1. Armbrust M, Fox A, Griffith R, Joseph AD, Katz RH, Konwinski A, Lee G, Patterson DA, Rabkin A, Stoica I et al (2009) Above the clouds: a berkeley view of cloud computing, tech. rep., Technical Report UCB/EECS-2009-28, EECS Department, University of California, Berkeley

  2. Mell P, Grance T (2011) The NIST definition of cloud computing. National Institute of Standards & Technology, Gaithersburg, MD, United States

    Book  Google Scholar 

  3. Gong C, Liu J, Zhang Q, Chen H, Gong Z (2010) The characteristics of cloud computing. In: 2010 39th International Conference on Parallel Processing Workshops (ICPPW). IEEE, pp 275–279

  4. Amanatullah Y, Lim C, Ipung HP, Juliandri A (2013) Toward cloud computing reference architecture: cloud service management perspective. In: 2013 International Conference on ICT for Smart Society (ICISS). IEEE, pp 1–4

  5. Pearson S (2013) Privacy, security and trust in cloud computing. In: Privacy and Security for Cloud Computing. Springer, pp 3–42

  6. Sun P (2020) Security and privacy protection in cloud computing: discussions and challenges. J Netw Comput Appl 160:102642

    Article  Google Scholar 

  7. Sun PJ (2019) Privacy protection and data security in cloud computing: a survey, challenges, and solutions. IEEE Access 7:147420–147452

    Article  Google Scholar 

  8. Ghorbel A, Ghorbel M, Jmaiel M (2017) Privacy in cloud computing environments: a survey and research challenges. J Supercomput 73(6):2763–2800

    Article  Google Scholar 

  9. Werner J, Merkle Westphall C, Westphall C (2017) Cloud identity management: a survey on privacy strategies. Comput Netw 122:29–42

    Article  Google Scholar 

  10. Ari AAA, Ngangmo OK, Titouna C, Thiare O, Kolyang Mohamadou A, Gueroui AM (2019) Enabling privacy and security in cloud of things: architecture, applications, security & privacy challenges. Appl Comput Inform. https://doi.org/10.1016/j.aci.2019.11.005

    Article  Google Scholar 

  11. Singh N, Singh A (2017) Data privacy protection mechanisms in cloud. Data Sci Eng 3:11

    Google Scholar 

  12. Gholami A, Laure E (2016) Security and privacy of sensitive data in cloud computing: a survey of recent developments. Comput Sci Inf Technol 5:01

    Google Scholar 

  13. Liu Y, Sun Y, Ryoo J, Rizvi S, Vasilakos A (2015) A survey of security and privacy challenges in cloud computing: solutions and future directions. J Comput Sci Eng 9:119–133

    Article  Google Scholar 

  14. Domingo-Ferrer J, Farràs O, Ribes-González J, Sánchez D (2019) Privacy-preserving cloud computing on sensitive data: a survey of methods, products and challenges. Comput Commun 140–141:38–60

    Article  Google Scholar 

  15. Abbas A, Khan SU (2014) A review on the state-of-the-art privacy-preserving approaches in the e-health clouds. IEEE J Biomed Health Inform 18(4):1431–1441

    Article  Google Scholar 

  16. Seliem M, Elgazzar K, Khalil K (2018) Towards privacy preserving iot environments: a survey. Wirel Commun Mob Comput 1(1032761):15

    Google Scholar 

  17. Westin A (1970) Privacy and freedom. Bodley Head

  18. Al-Ruithe M, Benkhelifa E, Hameed K (2018) Data governance taxonomy: cloud versus non-cloud. www.mdpi.com/journal/sustainability, vol 10, pp 2–26, 01

  19. Guilloteau S, Venkatesen M (2013) Privacy in cloud computing-itu-t technology watch report march 2012

  20. Al-Ruithe M, Benkhelifa E, Hameed K (2019) A systematic literature review of data governance and cloud data governance. Pers Ubiquitous Comput 23(5–6):839–859

    Article  Google Scholar 

  21. Luo X, Yang L, Ma L, Chu S, Dai H (2011) Virtualization security risks and solutions of cloud computing via divide-conquer strategy, 11

  22. Bohn RB, Messina J, Liu F, Tong J, Mao J (2011) Nist cloud computing reference architecture. In: 2011 IEEE World Congress on Services (SERVICES). IEEE, pp 594–596

  23. Svantesson D, Clarke R (2010) Privacy and consumer risks in cloud computing. Comput Law Secur Rev 26(4):391–397

    Article  Google Scholar 

  24. Sookhak M, Gani A, Khan MK, Buyya R (2017) Dynamic remote data auditing for securing big data storage in cloud computing. Inf Sci 380:101–116

    Article  Google Scholar 

  25. Huang J, Nicol DM (2013) Trust mechanisms for cloud computing. J Cloud Comput Adv Syst Appl 2:9

    Article  Google Scholar 

  26. Sookhak M, Gani A, Talebian H, Akhunzada A, Khan SU, Buyya R, Zomaya AY (2015) Remote data auditing in cloud computing environments: a survey, taxonomy, and open issues. ACM Comput Surv (CSUR) 47(4):65

    Article  Google Scholar 

  27. Mezgár I, Rauschecker U (2014) The challenge of networked enterprises for cloud computing interoperability. Comput Ind 65(4):657–674

    Article  Google Scholar 

  28. Mayahi SYKA, Rouached M, Al-Fairuz M, Jamoussi Y (2019) A comprehensive approach to privacy preserving data publishing in cloud computing, Master’s thesis, Sutan Qaboos University, Muscat, Oman

  29. Sweeney L (2002) k-anonymity: a model for protecting privacy. Int J Uncertainty Fuzziness Knowl Based Syst 10(05):557–570

    Article  MathSciNet  MATH  Google Scholar 

  30. Sharma S, Chen K, Sheth A (2018) Toward practical privacy-preserving analytics for iot and cloud-based healthcare systems. IEEE Internet Comput 22(2):42–51

    Article  Google Scholar 

  31. Akeel F, Fathabadi AS, Paci F, Gravell A, Wills G (2016) Formal modelling of data integration systems security policies. Data Sci Eng 1(3):139–148

    Article  Google Scholar 

  32. Muhasin HJ, Jabar MA, Abdullah S, Kasim S (2017) Managing sensitive data in cloud computing for effective information systems’ decisions

  33. Farooq MU, Waseem M, Khairi A, Mazhar S (2015) A critical analysis on the security concerns of internet of things (iot). Int J Comput Appl. 111, no. 7

  34. Rashdi ZA, Dick M, Storey I (2016) A conceptual framework for accountability in cloud computing service provision. arXiv preprint arXiv:1606.03540

  35. Anthonysamy P, Rashid A, Chitchyan R (2017) Present & future. In: 2017 IEEE/ACM 39th International Conference on Software Engineering: Software Engineering in Society Track (ICSE-SEIS). IEEE, pp 13–22

  36. Cleland-Huang J, Czauderna A, Gibiec M, Emenecker J (2010) A machine learning approach for tracing regulatory codes to product specific requirements. In: Proceedings of the 32nd ACM/IEEE International Conference on Software Engineering. ACM, vol 1, pp 155–164

  37. Factor ME, Kurtz B, Lebutsch D, Mega C, Shulman-Peleg A, Waizenegger T (2017) Digital data retention management, Apr. 4, US Patent 9613038

  38. Dong X, Li R, He H, Zhou W, Xue Z, Wu H (2015) Secure sensitive data sharing on a big data platform. Tsinghua Sci Technol 20(1):72–80

    Article  MathSciNet  Google Scholar 

  39. Alliance C (2011) Security guidance for critical areas of focus in cloud computing v3. 0, Cloud Security Alliance, vol 15

  40. Group TTW et al (2013) The notorious nine: cloud computing top threats in 2013, Cloud Security Alliance, pp 1–10

  41. Alsubaei F, Abuhussein A, Shiva S (2017) Security and privacy in the internet of medical things: taxonomy and risk assessment. In: 2017 IEEE 42nd Conference on Local Computer Networks Workshops (LCN Workshops). IEEE, pp 112–120

  42. Trapero R, Luna J, Suri N (2016) Quantifiably trusting the cloud: putting metrics to work. IEEE Secur Privacy 14(3):73–77

    Article  Google Scholar 

  43. Shokri R (2015) Quantifying and protecting location privacy. it-Information Technol. 57(4):257–263

  44. Tchernykh A, Schwiegelsohn U, Talbi E-G, Babenko M (2019) Towards understanding uncertainty in cloud computing with risks of confidentiality, integrity, and availability. J Comput Sci 36:100581

    Article  Google Scholar 

  45. Cao N, Wang C, Li M, Ren K, Lou W (2014) Privacy-preserving multi-keyword ranked search over encrypted cloud data. IEEE Trans Parallel Distrib Syst 25(1):222–233

    Article  Google Scholar 

  46. Lee JY, Lee JW, Kim SD et al (2009) A quality model for evaluating software-as-a-service in cloud computing. In: 7th ACIS International Conference on Software Engineering Research, Management and Applications, 2009. SERA’09. IEEE, pp 261–266

  47. Mell P, Scarfone K, Romanosky S (2007) A complete guide to the common vulnerability scoring system version 2.0. In: Published by FIRST-Forum of Incident Response and Security Teams, vol 1, p 23

  48. Alemany J, del Val E, Alberola J, García-Fornes A (2018) Estimation of privacy risk through centrality metrics. Future Gener Comput Syst 82:63–76

    Article  Google Scholar 

  49. Sun X, Singhal A, Liu P (2017) Towards actionable mission impact assessment in the context of cloud computing. In: IFIP Annual Conference on Data and Applications Security and Privacy, pp 259–274 Springer

  50. Wright D, De Hert P (2012) Introduction to privacy impact assessment. In: Privacy Impact Assessment. Springer, pp 3–32

  51. Wang P, Lin W-H, Kuo P-T, Lin H-T, Wang TC (2012) Threat risk analysis for cloud security based on attack-defense trees. In: 2012 8th International Conference on Computing Technology and Information Management (ICCM). IEEE, vol 1, pp 106–111

  52. Bellogín A, Castells P, Cantador I (2017) Statistical biases in information retrieval metrics for recommender systems. Inf Retrieval J 20(6):606–634

    Article  Google Scholar 

  53. Wagner I, Eckhoff D (2015) Technical privacy metrics: a systematic survey. arXiv preprint arXiv:1512.00327

  54. Sönmez FÖ (2019) Security qualitative metrics for open web application security project compliance. Proc Comput Sci 151:998–1003

    Article  Google Scholar 

  55. Li J, Zhang Y, Chen X, Xiang Y (2018) Secure attribute-based data sharing for resource-limited users in cloud computing. Comput Secur 72:1–12

    Article  Google Scholar 

  56. Zhang L, Zhang Y, Ma H (2018) Privacy-preserving and dynamic multi-attribute conjunctive keyword search over encrypted cloud data. IEEE Access

  57. Huang Q, Li H (2017) An efficient public-key searchable encryption scheme secure against inside keyword guessing attacks. Inf Sci 403:1–14

    Article  MATH  Google Scholar 

  58. Mowbray M, Pearson S, Shen Y (2012) Enhancing privacy in cloud computing via policy-based obfuscation. J Supercomput 61(2):267–291

    Article  Google Scholar 

  59. Xia Z, Wang X, Sun X, Wang Q (2016) A secure and dynamic multi-keyword ranked search scheme over encrypted cloud data. IEEE Trans Parallel Distrib Syst 27(2):340–352

    Article  Google Scholar 

  60. Ahmed H, Elkilani W (2009) Performance of encryption techniques for real time video streaming. IJCI. Int J Comput Inf 2(1):64–70

    Google Scholar 

  61. Tripathi R, Agrawal S (2014) Comparative study of symmetric and asymmetric cryptography techniques. Int J Adv Found Res Comput (IJAFRC) 1(6):68–76

    Google Scholar 

  62. Hou B, Chen F (2017) Gds-lc: a latency-and cost-aware client caching scheme for cloud storage. ACM Trans Storage (TOS) 13(4):1–33

    Article  Google Scholar 

  63. Purohit B, Singh PP (2013) Data leakage analysis on cloud computing. Int J Eng Res Appl 3(3):1311–1316

    Google Scholar 

  64. Kaaniche N, Laurent M (2017) Data security and privacy preservation in cloud storage environments based on cryptographic mechanisms. Comput Commun 111:120–141

    Article  Google Scholar 

  65. Wang B, Yu S, Lou W, Hou YT (2014) Privacy-preserving multi-keyword fuzzy search over encrypted data in the cloud. In: INFOCOM, 2014 Proceedings IEEE. IEEE, pp 2112–2120

  66. Guo C, Chen X, Jie Y, Zhangjie F, Li M, Feng B (2017) Dynamic multi-phrase ranked search over encrypted data with symmetric searchable encryption. IEEE Trans Serv Comput

  67. Bost R, Fouque P-A, Pointcheval D (2016) Verifiable dynamic symmetric searchable encryption: optimality and forward security. IACR Cryptol ePrint Archive 2016:62

    Google Scholar 

  68. Seo JH, Emura K (2014) Revocable hierarchical identity-based encryption. Theor Comput Sci 542:44–62

    Article  MathSciNet  MATH  Google Scholar 

  69. Li J, Li J, Chen X, Jia C, Lou W (2015) Identity-based encryption with outsourced revocation in cloud computing. IEEE Trans Comput 64(2):425–437

    Article  MathSciNet  MATH  Google Scholar 

  70. Yu Y, Au MH, Ateniese G, Huang X, Susilo W, Dai Y, Min G (2017) Identity-based remote data integrity checking with perfect data privacy preserving for cloud storage. IEEE Trans Inf Forensics Secur 12(4):767–778

    Article  Google Scholar 

  71. Kumar NS, Lakshmi GR, Balamurugan B (2015) Enhanced attribute based encryption for cloud computing. Proc Comput Sci 46:689–696

    Article  Google Scholar 

  72. Gorbunov S, Vaikuntanathan V, Wee H (2015) Attribute-based encryption for circuits. J ACM (JACM) 62(6):45

    Article  MathSciNet  MATH  Google Scholar 

  73. Li J, Huang X, Li J, Chen X, Xiang Y (2014) Securely outsourcing attribute-based encryption with checkability. IEEE Trans Parallel Distrib Syst 25(8):2201–2210

    Article  Google Scholar 

  74. Wang S, Zhou J, Liu JK, Yu J, Chen J, Xie W (2016) An efficient file hierarchy attribute-based encryption scheme in cloud computing. IEEE Trans Inf Forensics Secur 11(6):1265–1277

    Article  Google Scholar 

  75. Arriaga A, Tang Q, Ryan P (2014) Trapdoor privacy in asymmetric searchable encryption schemes. In: International Conference on Cryptology in Africa. Springer, pp 31–50

  76. Curtmola R, Garay J, Kamara S, Ostrovsky R (2011) Searchable symmetric encryption: improved definitions and efficient constructions. J Comput Secur 19(5):895–934

    Article  Google Scholar 

  77. Kamplee M, Solunke B (2017) Data sharing and self-destruction scheme in cloud. Int J Comput Appl 178:41–45

    Google Scholar 

  78. Xiong J, Liu X, Yao Z, Ma J, Li Q, Geng K, Chen PS (2014) A secure data self-destructing scheme in cloud computing. IEEE Trans Cloud Comput 2(4):448–458

    Article  Google Scholar 

  79. Li M, Yu S, Zheng Y, Ren K, Lou W (2013) Scalable and secure sharing of personal health records in cloud computing using attribute-based encryption. IEEE Trans Parallel Distrib Syst 24(1):131–143

    Article  Google Scholar 

  80. Ram CP, Sreenivaasan G (2010) Security as a service (sass): securing user data by coprocessor and distributing the data. In: Trendz in Information Sciences & Computing (TISC), 2010. IEEE, pp 152–155

  81. Xu D, Fu C, Li G, Zou D, Zhang H, Liu X-Y (2017) Virtualization of the encryption card for trust access in cloud computing. IEEE Access 5:20652–20667

    Article  Google Scholar 

  82. Kocabas O, Soyata T (2015) Utilizing homomorphic encryption to implement secure and private medical cloud computing. In: 2015 IEEE 8th International Conference on Cloud Computing. IEEE, pp 540–547

  83. Shoukry Y, Gatsis K, Alanwar A, Pappas GJ, Seshia SA, Srivastava M, Tabuada P (2016Privacy-aware quadratic optimization using partially homomorphic encryption. In: 2016 IEEE 55th Conference on Decision and Control (CDC). IEEE, pp 5053–5058

  84. Aono Y, Hayashi T, Wang L, Moriai S et al (2017) Privacy-preserving deep learning via additively homomorphic encryption. IEEE Trans Inf Forensics Secur 13(5):1333–1345

    Google Scholar 

  85. Li P, Li J, Huang Z, Gao C-Z, Chen W-B, Chen K (2018) Privacy-preserving outsourced classification in cloud computing. Cluster Comput 21(1):277–286

    Article  Google Scholar 

  86. Pearson S, Casassa-Mont M (2011) Sticky policies: An approach for managing privacy across multiple parties. Computer 44(9):60–68

    Article  Google Scholar 

  87. Yang C, Chen X, Xiang Y (2018) Blockchain-based publicly verifiable data deletion scheme for cloud storage. J Netw Comput Appl 103:185–193

    Article  Google Scholar 

  88. Hosseinzadeh S, Laurén S, Rauti S, Hyrynsalmi S, Conti M,Leppänen V (2017) Obfuscation and diversification for securing cloud computing. In: Enterprise Security. Springer, pp 179–202

  89. Khan KM, Shaheen M (2015) Data obfuscation for privacy and confidentiality in cloud computing. In: 2015 IEEE International Conference on Software Quality, Reliability and Security-Companion (QRS-C). IEEE, pp 195–196

  90. Osia SA, Shamsabadi AS, Taheri A,Katevas K, Rabiee HR, Lane ND, Haddadi H (2017Privacy-preserving deep inference for rich user data on the cloud. arXiv preprint arXiv:1710.01727

  91. Rai BK, Srivastava A (2016) Pseudonymization techniques for providing privacy and security in ehr. Int J Emerg Trends Technol Comput Sci (IJETTCS)(ISSN 2278-6858), vol 5(4)

  92. Soria-Comas J, Domingo-Ferrer J, Sánchez D, Megías D (2017) Individual differential privacy: a utility-preserving formulation of differential privacy guarantees. IEEE Trans Inf Forensics Secur 12(6):1418–1429

    Article  Google Scholar 

  93. Sánchez D, Batet M (2017) Privacy-preserving data outsourcing in the cloud via semantic data splitting. Comput Commun 110:187–201

    Article  Google Scholar 

  94. Kelbert F, Pretschner A (2015) A fully decentralized data usage control enforcement infrastructure. In: International Conference on Applied Cryptography and Network Security. Springer, pp 409–430

  95. Ayache M, Erradi M, Freisleben B (2015) Access control policies enforcement in a cloud environment: Openstack,. In: 2015 11th International Conference on Information Assurance and Security (IAS). IEEE, pp 26–31

  96. Hamlen KW, Kagal L, Kantarcioglu M (2012) Policy enforcement framework for cloud data management. IEEE Data Eng Bull 35(4):39–45

    Google Scholar 

  97. Vahldiek-Oberwagner A, Elnikety E, Mehta A, Garg D, Druschel P, Rodrigues R, Gehrke J, Post A (2015) Guardat: enforcing data policies at the storage layer. In: Proceedings of the Tenth European Conference on Computer Systems. ACM, p 13

  98. Achemlal M, Gharout S, Gaber C (2011) Trusted platform module as an enabler for security in cloud computing. In: 2011 Conference on Network and Information Systems Security (SAR-SSI). IEEE, pp 1–6

  99. Patel HB, Patel DR, Borisaniya B, Patel A (2012) Data storage security model for cloud computing. In: International Conference on Advances in Communication, Network, and Computing. Springer, pp 37–45

  100. Stefanov E, Papamanthou C, Shi E (2014) Practical dynamic searchable encryption with small leakage. NDSS 71:72–75

    Google Scholar 

  101. Boneh D, Crescenzo GDi, Ostrovsky R, Persiano G (2004) Public key encryption with keyword search. In: International Conference on the Theory and Applications of Cryptographic Techniques. Springer, pp 506–522

  102. Sun W, Lou W, Hou YT, Li H (2014) Privacy-preserving keyword search over encrypted data in cloud computing. In: Secure Cloud Computing. Springer, pp 189–212

  103. Sun W, Wang B, Cao N, Li M, Lou W, Hou YT, Li H (2013) Privacy-preserving multi-keyword text search in the cloud supporting similarity-based ranking. In: Proceedings of the 8th ACM SIGSAC Symposium on Information, Computer and Communications Security. ACM, pp 71–82

  104. Armknecht F, Boyd C, Carr C, Gjøsteen K, Jäschke A, Reuter CA, Strand M (2015) A guide to fully homomorphic encryption. IACR Cryptology ePrint Archive 2015:1192

    Google Scholar 

  105. Crescenzo GDi, Ostrovsky R, Rajagopalan S (1999) Conditional oblivious transfer and timed-release encryption. In: International Conference on the Theory and Applications of Cryptographic Techniques. Springer, pp 74–89

  106. Paterson KG, Quaglia EA (2010) Time-specific encryption. In: International Conference on Security and Cryptography for Networks. Springer, pp 1–16

  107. Nagra J, Collberg C (2009) Surreptitious Software: Obfuscation, Watermarking, and Tamperproofing for Software Protection: Obfuscation, Watermarking, and Tamperproofing for Software Protection. Pearson Education

  108. Hosseinzadeh S, Hyrynsalmi S, Conti M, Leppänen V (2015) Security and privacy in cloud computing via obfuscation and diversification: a survey. In: 2015 IEEE 7th International Conference on Cloud Computing Technology and Science (CloudCom). IEEE, pp 529–535

  109. Braca P, Lazzeretti R, Marano S, Matta V (2016) Learning with privacy in consensus + obfuscation. IEEE Signal Process Lett 23(9):1174–1178

    Google Scholar 

  110. Wang S, Wang P, Wu D (2017) Composite software diversification. In: 2017 IEEE International Conference on Software Maintenance and Evolution (ICSME). IEEE, pp 284–294

  111. Hosseinzadeh S, Rauti S, Laurén S, Mäkelä J-M, Holvitie J, Hyrynsalmi S, Leppänen V (2018) Diversification and obfuscation techniques for software security: a systematic literature review. Inf Softw Technol 104:72–93

    Article  Google Scholar 

  112. Arava K, Lingamgunta S (2019) Adaptive k-anonymity approach for privacy preserving in cloud. Arab J Sci Eng 1–8

  113. Li T, Li N, Zhang J, Molloy I (2012) Slicing: a new approach for privacy preserving data publishing. IEEE Trans Knowl Data Eng 24(3):561–574

    Article  Google Scholar 

  114. Ilavarasi A, Sathiyabhama B, Poorani S (2013) A survey on privacy preserving data mining techniques. Int J Comput Sci Bus Inf 7(1):209–221

    Google Scholar 

  115. Raju G et al (2013) Privacy preserving using slicing technique. IJRCCT 2(10):1063–1068

    Google Scholar 

  116. Rohilla S, Sharma M, Kulothungan A, Bhardwaj M (2015) Privacy preserving data publishing through slicing. Am J Netw Commun 4(3–1):45–53

    Article  Google Scholar 

  117. Onashoga S, Bamiro B, Akinwale A, Oguntuase J (2017) Kc-slice: a dynamic privacy-preserving data publishing technique for multisensitive attributes. Inf Secur J Glob Perspect 26(3):121–135

    Article  Google Scholar 

  118. di Vimercati SDC, Erbacher RF, Foresti S, Jajodia S, Livraga G, Samarati P ,(2014) Encryption and fragmentation for data confidentiality in the cloud. In: Foundations of Security Analysis and Design VII. Springer, pp 212–243

  119. Farràs O, Ribes-González J, Ricci S (2018) Privacy-preserving data splitting: a combinatorial approach. arXiv preprint arXiv:1801.05974

  120. Farnan NL, Lee AJ, Chrysanthis PK, Yu T (2014) Paqo: preference-aware query optimization for decentralized database systems. In: 2014 IEEE 30th International Conference on Data Engineering (ICDE). IEEE, pp 424–435

  121. Barhamgi M, Bandara AK, Yu Y, Belhajjame K, Nuseibeh B (2016) Protecting privacy in the cloud: Current practices, future directions. Computer 49(2):68–72

    Article  Google Scholar 

  122. Wu Z, Li G, Shen S, Lian X, Chen E, Xu G (2020) Constructing dummy query sequences to protect location privacy and query privacy in location-based services. World Wide Web, pp 1–25

  123. Gunawan D, Mambo M (2019) Data anonymization for hiding personal tendency in set-valued database publication. Future Internet 11(6):138

    Article  Google Scholar 

  124. Schoepe D, Balliu M, Pierce BC, Sabelfeld A (2016) Explicit secrecy: a policy for taint tracking. In: 2016 IEEE European Symposium on Security and Privacy (EuroS&P). IEEE, pp 15–30

  125. Singh J, Powles J, Pasquier T, Bacon J (2015) Data flow management and compliance in cloud computing. IEEE Cloud Comput 2(4):24–32

    Article  Google Scholar 

  126. Trabelsi S, Sendor J (2012) Sticky policies for data control in the cloud. In: 2012 Tenth Annual International Conference on Privacy, Security and Trust (PST). IEEE, pp 75–80

  127. Harvan M, Pretschner A (2009) State-based usage control enforcement with data flow tracking using system call interposition. In: Third International Conference on Network and System Security, 2009. NSS’09. IEEE, pp 373–380

  128. Sun H, Jafar SA (2017) The capacity of private information retrieval. IEEE Trans Inf Theory 63(7):4075–4088

    Article  MathSciNet  MATH  Google Scholar 

  129. Yang K, Zhang C, Yu N (2015) Economic costs of multi-sever private information retrieval in cloud computing. In: 2015 International Conference on Cloud Computing and Big Data (CCBD). IEEE, pp 373–376

  130. Chen Z, Wang Z, Jafar SA (2020) The capacity of t-private information retrieval with private side information. IEEE Trans Inf Theory

  131. Banawan K, Ulukus S (2018) The capacity of private information retrieval from coded databases. IEEE Trans Inf Theory 64(3):1945–1956

    Article  MathSciNet  MATH  Google Scholar 

  132. Choo K-KR (2014) Legal issues in the cloud. IEEE Cloud Comput 1(1):94–96

    Article  Google Scholar 

  133. Martinez FR, Pulier E (2015) System and method for a cloud computing abstraction layer with security zone facilities, June 30, US Patent 9069599

  134. Kelbert F, Pretschner A (2013) Data usage control enforcement in distributed systems. In: Proceedings of the Third ACM Conference on Data and Application Security and Privacy. ACM, pp 71–82

  135. Awan A, Kshirsagar S, Kumar C, Agarwal D, Maradani S, Babu SG (2018) System and method for application usage controls through policy enforcement, Jan. 30, US Patent 9882909

  136. Enkhtaivan B, Inoue A (2020) Mediating data trustworthiness by using trusted hardware between iot devices and blockchain. In: 2020 IEEE International Conference on Smart Internet of Things (SmartIoT). IEEE, pp 314–318

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aymen Akremi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akremi, A., Rouached, M. A comprehensive and holistic knowledge model for cloud privacy protection. J Supercomput 77, 7956–7988 (2021). https://doi.org/10.1007/s11227-020-03594-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-020-03594-3

Keywords

Navigation