Skip to main content
Log in

Initial state fluctuations and the sub-leading flow modes from the experimental data and HYDJET++ model

  • Regular Article - Topical Issue
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

A few microseconds after the birth of the Universe, the Universe was filled with the matter consisting of quarks and gluons, called quark gluon plasma (QGP). That primordial QGP lasts for about a few \(\upmu s\) until the Universe cooled down and expanded enough that colored quarks had to confine within the colorless new formed hadrons. In high-energy nuclear collisions, where a high baryon density, or a high temperature could be achieved, small pieces of the QGP can be recreated and studied experimentally. Such created QGP undergoes an explosion, called the Little Bang. In spite of its small size (about 1000 \(fm^{3}\)) and short duration (a few fm/c, where c is the speed of light), the QGP is well described by relativistic hydrodynamics, including even the small perturbations on top of the explosion. In high-energy nucleus–nucleus (AA) collisions which have been performed at the Relativistic Heavy Ion Collider and at the Large Hadron Collider, the QGP was created with extremely high temperature and the baryon density close to zero. One of observables used to study QGP is azimuthal anisotropy. It was found that the initial state fluctuations have a significant influence on azimuthal anisotropies. We present results on azimuthal anisotropies measured in ultra-central PbPb collisions at \(\sqrt{s}_{NN}\) = 2.76 TeV by the CMS and ALICE collaborations, as well as the leading and sub-leading flow modes for the elliptic and triangular anisotropies. The measured flow modes are also compared with the predictions from the HYDJET++ model.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: Only one, but rather big part of the data presented in the paper is available via Durham HEP data via the following link: https://www.hepdata.net/record/ins1618346.]

Notes

  1. The centrality is defined as a fraction of the total inelastic AA cross section, with 0% denoting the most central collisions.

  2. In an ideal circle-like geometry, impact parameter \(\mathbf {b}\) is a vector which connects the centers of the colliding nuclei in the plane perpendicular to the beam axis.

  3. Pseudorapidity \(\eta \) is defined as \(-ln\tan (\theta /2)\) where \(\theta \) is the polar angle.

  4. The \(v_{7}\) harmonic as a function of \(p_{T}\) is not presented in Figs. 1 and 2 due to limited statistical precision.

References

  1. I. Arsene et al., Nucl. Phys. A 757, 1 (2005)

    Article  ADS  Google Scholar 

  2. B.B. Back et al., Nucl. Phys. A 757, 28 (2005)

    Article  ADS  Google Scholar 

  3. J. Adams et al., Nucl. Phys. A 757, 102 (2005)

    Article  ADS  Google Scholar 

  4. K. Adcox et al., Nucl. Phys. A 757, 184 (2005)

    Article  ADS  Google Scholar 

  5. K. Aamodt et al., Phys. Lett. B 708, 249 (2012)

    Article  ADS  Google Scholar 

  6. B.B. Abelev et al., JHEP 06, 190 (2015)

    Article  ADS  Google Scholar 

  7. G. Aad et al., Phys. Rev. C 86, 014907 (2012)

    Article  ADS  Google Scholar 

  8. G. Aad et al., JHEP 11, 183 (2013)

    ADS  Google Scholar 

  9. G. Aad et al., Phys. Rev. C 90, 024905 (2014)

    Article  ADS  Google Scholar 

  10. S. Chatrchyan et al., Eur. Phys. J. C 72, 2012 (2012)

    Article  ADS  Google Scholar 

  11. S. Chatrchyan et al., Phys. Rev. C 87, 014902 (2013)

    Article  ADS  Google Scholar 

  12. S. Chatrchyan et al., Phys. Rev. C 89, 044906 (2014)

    Article  ADS  Google Scholar 

  13. S. Chatrchyan et al., JHEP 02, 088 (2014)

    Article  ADS  Google Scholar 

  14. A.M. Sirunyan et al., Phys. Rev. C 96, 064902 (2017)

    Article  ADS  Google Scholar 

  15. B. Schenke, S. Jeon, C. Gale, Phys. Rev. C 82, 014903 (2010)

    Article  ADS  Google Scholar 

  16. C. Shen, Z. Qiu, H. Song, J. Bernhard, S. Bass, U. Heinz, Comput. Phys. Commun. 199, 61 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  17. K. Dusling, D. Teaney, Phys. Rev. C 77, 034905 (2008)

    Article  ADS  Google Scholar 

  18. B. Alver et al., Phys. Rev. Lett. 104, 142301 (2010)

    Article  ADS  Google Scholar 

  19. B. Alver et al., Phys. Rev. C 77, 014906 (2008)

    Article  ADS  Google Scholar 

  20. R.S. Bhalerao, J.Y. Ollitrault, Phys. Lett. B 641, 260 (2006)

    Article  ADS  Google Scholar 

  21. S.A. Voloshin, A.M. Poskanzer, A. Tang, G. Wang, Phys. Lett. B 659, 537 (2008)

    Article  ADS  Google Scholar 

  22. J.Y. Ollitrault, A.M. Poskanzer, S.A. Voloshin, Phys. Rev. C 80, 014904 (2009)

    Article  ADS  Google Scholar 

  23. B. Alver, G. Roland, Phys. Rev. C, vol. 81, p. 054905 (2010) [erratum: Phys. Rev. C, vol.82, p. 039903 (2010)]

  24. Z. Qiu, U.W. Heinz, Phys. Rev. C 84, 024911 (2011)

    Article  ADS  Google Scholar 

  25. S. Wang et al., Phys. Rev. C 44, 1091 (1991)

    Article  ADS  Google Scholar 

  26. F.G. Gardim, F. Grassi, M. Luzum, J.Y. Ollitrault, Phys. Rev. C 87, 031901 (2013)

    Article  ADS  Google Scholar 

  27. U. Heinz, Z. Qiu, C. Shen, Phys. Rev. C 87, 034913 (2013)

    Article  ADS  Google Scholar 

  28. R.S. Bhalerao, J.Y. Ollitrault, S. Pal, D. Teaney, Phys. Rev. Lett. 114, 152301 (2015)

    Article  ADS  Google Scholar 

  29. A. Mazeliauskas, D. Teaney, Phys. Rev. C 91, 044902 (2015)

    Article  ADS  Google Scholar 

  30. S. Chatrchyan et al., JINST 3, S08004 (2008)

    Google Scholar 

  31. V. Khachatryan et al., Phys. Rev. C 92, 034911 (2015)

    Article  ADS  Google Scholar 

  32. S. Chatrchyan et al., Phys. Lett. B 724, 213 (2013)

    Article  ADS  Google Scholar 

  33. T. Sjostrand, S. Mrenna, P. Skands, JHEP 0605, 026 (2006)

    Article  ADS  Google Scholar 

  34. I.P. Lokhtin, A.M. Snigirev, Eur. Phys. J. C 45, 211 (2006)

    Article  ADS  Google Scholar 

  35. N. .S. Amelin, R. Lednicky, I. .P. Lokhtin, L. .V. Malinina, A. .M. Snigirev, Iu. A Karpenko, Yu. M Sinyukov, I. Arsene, L. Bravina, Phys. Rev. C 77, 014903 (2008)

    Article  ADS  Google Scholar 

  36. I.P. Lokhtin, L.V. Malinina, S.V. Petrushanko, A.M. Snigirev, I. Arsene, K. Tywoniuk, Comput. Phys. Commun. 180, 779 (2009)

    Article  ADS  Google Scholar 

  37. U.A. Wiedemann, Phys. Rev. C 57, 266 (1998)

    Article  ADS  Google Scholar 

  38. L. .V. Bravina, B. .H. Brusheim Johansson, G. Kh Eyyubova, V. .L. Korotkikh, I. .P. Lokhtin, L. .V. Malinina, S. .V. Petrushanko, A. .M. Snigirev, E. .E. Zabrodin, Eur. Phys. J. C 74, 2807 (2014)

    Article  ADS  Google Scholar 

  39. L.V. Bravina, E.S. Fotina, V.L. Korotkikh, I.P. Lokhtin, L.V. Malinina, E.N. Nazarova, S.V. Petrushanko, A.M. Snigirev, E.E. Zabrodin, EPJ Web Conf. 126, 04006 (2016)

    Article  Google Scholar 

  40. B.H. Alver, C. Gombeaud, M. Luzum, J.Y. Ollitrault, Phys. Rev. C 82, 034913 (2010)

    Article  ADS  Google Scholar 

  41. N. Borghini, J.Y. Ollitrault, Phys. Lett. B 642, 227 (2006)

    Article  ADS  Google Scholar 

  42. P. Cirkovic, D. Devetak, M. Dordevic, J. Milosevic, M. Stojanovic, Chin. Phys. C 41, 074001 (2017)

    Article  ADS  Google Scholar 

  43. Y. Zhou, Nucl. Phys. A 931, 949 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the financial support by the Ministry of Education, Science and Technological Development of the Republic of Serbia and to “VINČA” Institute of Nuclear Science - National Institute of the Republic of Serbia, University of Belgrade.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Milosevic.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Milosevic, J. Initial state fluctuations and the sub-leading flow modes from the experimental data and HYDJET++ model. Eur. Phys. J. D 75, 14 (2021). https://doi.org/10.1140/epjd/s10053-020-00037-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-020-00037-9

Navigation