Skip to main content
Log in

Swarm intelligence unravels the confinement effects for tiny noble gas clusters within carbon nanotubes

  • Regular Article - Topical Issue
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Inspired by the myriad manifestations of confinement effects for atoms and molecules encapsulated within carbon nanotubes (CNTs), herein, we explore the role of the physical dimensions of the CNTs in controlling the optimal configurations of confined noble gas clusters. We utilize the particle swarm optimization (PSO) technique together with the continuum approximation for CNTs to arrive at the minimum energy configurations of the encapsulated He, Ne and Ar clusters in the size range 2–10. The ease with which a global search technique such as PSO can track down the minima on complex potential energy surfaces within reasonable computational times enables probing a wide spectrum of CNTs covering nanotubes with lengths in the 10–50 Å  range and possessing radii of 3–6 Å. Our findings indicate a strong correlation between the most stable cluster configuration and the physical dimensions of the CNT within which it is confined. Notably, the confined cluster geometries encompass linear, zigzag and spiral configurations, in striking contrast to their isolated geometries. Guided by the chemical intuition, we have further expanded the search space and examined the possibility of exohedral binding in necessary cases. The implementation of the PSO along with the continuum approximation can generate excellent starting geometries amenable for further analysis using highly accurate first-principles calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availibility Statement

This manuscript has data included as electronic supplementary material.

References

  1. S. Iijima, Nature 354, 56–58 (1991)

    Article  ADS  Google Scholar 

  2. R. Saito, G. Dresselhaus, M.S. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial College Press, UK, 1998)

    Book  MATH  Google Scholar 

  3. M. Trojanowicz, Trends Anal. Chem. 25, 480–489 (2016)

    Article  Google Scholar 

  4. F. Liang, B. Chen, Trends Anal. Chem. 17, 10–24 (2010)

    Google Scholar 

  5. Y. Che, H. Chen, H. Gui, J. Liu, B. Liu, C. Zhou, Semicond. Sci. Technol. 29, 073001 (1-17) (2014)

  6. A.A. Popov, S. Yang, L. Dunsch, Chem. Rev. 113, 5989–6113 (2013)

    Article  Google Scholar 

  7. G.E. Froudakis, Mater. Today 14, 324–328 (2011)

    Article  Google Scholar 

  8. J. Wang, Electroanalysis 17, 7–14 (2005)

    Article  Google Scholar 

  9. D.R. Kauffman, A. Star, Angew. Chem. 47, 6550–6570 (2008)

    Article  Google Scholar 

  10. J. Hernández-Rojas, F. Calvo, J. Bretón, J.M. Gomez Llorente, J. Phys. Chem. C 116, 17019–17028 (2012)

  11. D.V. Kazachkin, Y. Nishimura, A.W. Witek, S. Irle, E. Borguet, J. Am. Chem. Soc. 133, 8191–8198 (2011)

    Article  Google Scholar 

  12. X. Pan, X. Bao, Acc. Chem. Res. 44, 553–562 (2011)

    Article  Google Scholar 

  13. X. Pan, Z. Fan, W. Chen, Y. Ding, H. Luo, X. Bao, Nat. Mater. 6, 507–511 (2007)

    Article  ADS  Google Scholar 

  14. Z.J. Jakubek, B. Simard, Langmuir 20, 5940–5945 (2004)

    Article  Google Scholar 

  15. P. Kondratyuk, J.T. Yates, Acc. Chem. Res 40, 995–1004 (2007)

    Article  Google Scholar 

  16. W. Shen, X. Li, RSC Adv. 6, 91295–91300 (2016)

    Article  ADS  Google Scholar 

  17. R. Majidi, Fuller. Nanotub. Car. N. 22, 520–527 (2014)

    Article  Google Scholar 

  18. V.V. Simonyan, J.K. Johnson, A. Kuznetsova, J.T. Yates, J. Chem. Phys. 22, 520–527 (2014)

    Google Scholar 

  19. Z.B. Nojini, A.A. Rafati, S.M. Hashemianzadeh, S. Samiee, J. Mol. Model. 17, 785–794 (2011)

    Article  Google Scholar 

  20. M.K. Agusta, I. Prasetiyo, A.G. Saputro, R. Maezono, H.K. Dipojono, J. Phys.: Conf. Ser. 739, 012081 (1-7) (2016)

    Google Scholar 

  21. D. Chakraborty, P.K. Chattaraj, Chem. Phys. Lett. 621, 29–34 (2015)

    Article  ADS  Google Scholar 

  22. P. Kumar, C.N. Ramachandran, B.K. Mishra, N. Sathyamurthy, Chem. Phys. Lett. 618, 42–45 (2015)

    Article  ADS  Google Scholar 

  23. S. Agnihotri, J.P. Mota, M. Rostam-Abadi, M.J. Rood, Carbon 618, 2376–2383 (2006)

    Article  Google Scholar 

  24. E.B. Mackie, R.A. Wolfson, L.M. Arnold, K. Lafdi, A.D. Migone, Langmuir 13, 7197–7201 (1997)

    Article  Google Scholar 

  25. S. Inoue, N. Ichikuni, T. Suzuki, T. Uematsu, K. Kaneko, J. Phys. Chem. B 102, 4689–4692 (1998)

    Article  Google Scholar 

  26. M. Muris, N. Dufau, M. Bienfait, N. Dupont-Pavlovsky, Y. Grillet, J.P. Palmari, Langmuir 16, 7019–7022 (2000)

    Article  Google Scholar 

  27. J. Jiang, S.I. Sandler, Langmuir 20, 10910–10918 (2004)

    Article  Google Scholar 

  28. X. Zhang, W. Wang, Fluid Phase Equilibria 194–197, 289–295 (2002)

    Article  Google Scholar 

  29. S.M. Fatemi, M. Foroutan, Int. J. Environ. Sci. Technol. 13, 457–470 (2016)

    Article  Google Scholar 

  30. A.W. Hauser, A.O. Mitrushchenkov, M.P. Lara-Castells, J. Phys. Chem. C 121, 3807–3821 (2017)

    Article  Google Scholar 

  31. Z.E. Brain, A.M. Addicoat, J. Chem. Phys. 135, 174106 (1–10) (2011)

    Article  ADS  Google Scholar 

  32. M.S. Jorgensen, M.N. Groves, B. Hammer, J. Chem. Theory Comput. 13, 1486–1493 (2017)

    Article  Google Scholar 

  33. T. Dresselhaus, J. Yang, S. Kumbhar, M.P. Waller, J. Chem. Theory Comput. 9, 2137–2149 (2013)

    Article  Google Scholar 

  34. R. Shukla, D. Ray, K. Sarkar, M. Kumar Dixit, S. Prasad Bhattacharyya, Int. J. Quantum Chem. 117, e25328 (1–5) (2017)

  35. J. Kennedy, R. Eberhart, in Proceedings of ICNN’95 - International Conference on Neural Networks, ed. by IEEE, pp. 1942-1948

  36. R. Eberhart, Y. Shi, in Proceedings of the 2001 Congress on Evolutionary Computation, ed. by IEEE, pp. 81-86

  37. Y. Wang, M. Miao, J. Lv, L. Zhu, K. Yin, H. Liu, Y. Ma, J. Chem. Phys. 137, 224108 (1-6) (2012)

    ADS  Google Scholar 

  38. C.K.N. Marcus, S. Fong, S.W.I. Siu, J. Bioinform. Comput. Biol. 13, 1541007 (1-18) (2015)

  39. S.T. Call, D.Y. Zubarev, A.I. Boldyrev, J. Comput. Chem. 13, 1177–1186 (2006)

    Google Scholar 

  40. G. Jana, A. Mitra, S. Pan, S. Sural, P.K. Chattaraj, Front. Chem. 7, 1–13 (2019)

    Article  Google Scholar 

  41. B.J. Cox, N. Thamwattana, J.M. Hill, Proc. R. Soc. A 463, 461–476 (2007)

    Article  ADS  Google Scholar 

  42. B.J. Cox, N. Thamwattana, J.M. Hill, Proc. R. Soc. A 463, 477–494 (2007)

    Article  ADS  Google Scholar 

  43. T.A. Hilder, J.M. Hill, J. Appl. Phys. 101, 064319 (1–13) (2007)

    Article  ADS  Google Scholar 

  44. N. Thamwattana, D. Baowan, J.M. Hill, J. Comput. Theor. Nanosci. 6, 972–984 (2009)

    Article  Google Scholar 

  45. M. Hodak, L.A. Girifalco, Chem. Phys. Lett. 350, 405–411 (2001)

  46. T. Tran-Duc, N. Thamwattana, J.M. Hill, J. Math. Chem. 49, 1115–1127 (2011)

    Article  MathSciNet  Google Scholar 

  47. S.G. Balasubramani, D. Singh, R.S. Swathi, J. Chem. Phys. 141, 184304 (1-15) (2014)

    Article  ADS  Google Scholar 

  48. M. Abbaspour, H. Akbarzadeh, S.Z. Banihashemi, A. Sotoudeh, Physica A 491, 219–232 (2018)

    Article  ADS  Google Scholar 

  49. C. Owais, G. Aswin, R.S. Swathi, J. Indian Chem. Soc. 96, 1019–1028 (2019)

  50. C.H. Owais, C. John, R.S. Swathi, Phys. Chem. Chem. Phys. 22, 20693–20703 (2020)

    Article  Google Scholar 

  51. J.E. Lennard-Jones, Proc. Phys. Soc. 43, 461–482 (1931)

    Article  ADS  Google Scholar 

  52. T. Tran-Duc, N. Thamwattana, B.J. Cox, J.M. Hill, Comput. Mater. Sci. 50, 2720–2726 (2011)

    Article  Google Scholar 

  53. O. Warr, C.J. Ballentine, J. Mu, A. Masters, J. Phys. Chem. B 119, 14486–14495 (2015)

    Article  Google Scholar 

  54. J. Kennedy, R. Mendes, in Proceedings of the 2002 Congress on Evolutionary Computation, CEC’02, ed. by IEEE, pp. 1671-1676

  55. D.C. Liu, J. Nocedal, Math. Prog. 45, 523–528 (1989)

    Article  Google Scholar 

  56. K. E. Parsopoulos, M. N. Vrahatis, in Proceedings of the Euro-International Symposium on Computational Intelligence 2002, ed. by IOS Press, pp. 214–220

  57. http://nanotube.msu.edu

  58. Maple 19 (Maplesoft, a division of Waterloo Maple Inc.: Waterloo, Canada, 2019)

  59. G. Stan, M.W. Cole, Surf. Sci. 395, 280–291 (1998)

    Article  ADS  Google Scholar 

  60. R. Storn, K. Price, J. Glob. Optim. 11, 341–359 (1997)

    Article  Google Scholar 

  61. Y. Zhao, D.G. Truhlar, Theor. Chem. Acc. 120, 215–241 (2008)

    Article  Google Scholar 

  62. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams- Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman and D. J. Fox, Gaussian 16, revision C.01 (Gaussian Inc., Wallingford CT, 2016)

  63. M. Khatua, S. Pan, P.K. Chattaraj, J. Chem. Phys. 140, 164306 (2014)

    Article  ADS  Google Scholar 

  64. K.B. Wiberg, Tetrahedron 24, 1083–1096 (1968)

    Article  Google Scholar 

Download references

Acknowledgements

R.S.S. acknowledges the Kerala State Council for Science, Technology and Environment (KSCSTE) for financial support of this work, through the grant number KSCSTE/430/2018-KSYSA-RG. C.H.O. and C.J. thank IISER TVM for the fellowship.

Author information

Authors and Affiliations

Authors

Contributions

All the authors were involved in the preparation of the manuscript and have approved the final version of the manuscript.

Corresponding author

Correspondence to Rotti Srinivasamurthy Swathi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 24656 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Owais, C., John, C. & Swathi, R.S. Swarm intelligence unravels the confinement effects for tiny noble gas clusters within carbon nanotubes. Eur. Phys. J. D 75, 16 (2021). https://doi.org/10.1140/epjd/s10053-020-00035-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-020-00035-x

Navigation