Skip to main content

Advertisement

Log in

Binding energy and decaytime of exciton in dielectric medium

  • Regular Article - Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We developed a unique model for exciton in monolayer medium with an effective dielectric constant \(\epsilon _{eff}\) (in which the monolayer material is placed on a substrate such as fused silica glass or \(SiO_{2}\) in experiments). Our model was based on an exact solution of the corresponding fully-covariant two-body Dirac-Coulomb type equation. For singlet quantum state of a static electron-hole pair in such a medium, we obtained a non-perturbative frequency spectrum composed of real and imaginary parts. We obtained explicit expressions for practical calculations of binding energy and decaytime of such a system. The results show that one can actively tune both binding energy and decaytime of an exciton during photo-excitation experiments by adjusting the value of \(\epsilon _{eff}\). We think that our calculations and approaches eliminate cross-talk in the literature and explain the discrepancy between experimental results of binding energy of an exciton for different substrates.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: No data were used to support this study.]

Notes

  1. \((\sigma ^{0}\otimes \sigma ^{0})^{2}\) gives \(4\times 4\) dimensional unit matrix \(\mathbf{I }_{4}\).

References

  1. K. Novoselov, D. Jiang, F. Schedin, T. Booth, V. Khotkevich, S. Morozov, A. Geim, Proc. Natl. Acad. Sci. U.S.A 102, 10451–10453 (2005)

    Article  ADS  Google Scholar 

  2. A.T. Hanbicki, M. Currie, G. Kioseoglou, A.L. Friedman, B.T. Jonker, Solid State Commun. 203, 16–20 (2015)

    Article  ADS  Google Scholar 

  3. A. Ramasubramaniam, Phys. Rev. B 86, 115409 (2012)

    Article  ADS  Google Scholar 

  4. N. Kumar, Q. Cui, F. Ceballos, D. He, Y. Wang, H. Zhao, Phys. Rev. B 89, 125427 (2014)

    Article  ADS  Google Scholar 

  5. J. Xiao, M. Zhao, Y. Wang, X. Zhang, Nanophotonics 6, 1309–1328 (2017)

    Article  Google Scholar 

  6. Mak, Kin Fai and Lee, Changgu and Hone, James and Shan, Jie and Heinz, Tony F, Physical Review Letters, 105, (2010), 136805

  7. D. Jariwala, V.K. Sangwan, L.J. Lauhon, T.J. Marks, M.C. Hersam, ACS Nano 8, 1102–1120 (2014)

    Article  Google Scholar 

  8. D. Xiao, G.-B. Liu, W. Feng, X. Xu, W. Yao, Phys. Rev. Lett. 108, 196802 (2012)

    Article  ADS  Google Scholar 

  9. A. Kormanyos, V. Zolyomi, N.D. Drummond, G. Burkard, Phys. Rev. X 4, 011034 (2014)

    Google Scholar 

  10. Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Nat. Nanotechnol. 7, 699 (2012)

    Article  ADS  Google Scholar 

  11. J.S. Ross, P. Rivera, J. Schaibley, E. Lee-Wong, H. Yu, T. Taniguchi, K. Watanabe, J. Yan, D. Mandrus, D. Cobden, W. Yao, X. Xu, Nano Lett. 17, 638–643 (2017)

    Article  ADS  Google Scholar 

  12. K.F. Mak, J. Shan, Nat. Photonics 10, 216–226 (2016)

    Article  ADS  Google Scholar 

  13. F. Tseng, E. Simsek, D. Gunlycke, J. Phys.-Condensed Matter 28, 034005 (2015)

    Article  ADS  Google Scholar 

  14. Z. Ye, T. Cao, K. O’Brien, H. Zhu, X. Yin, Y. Wang, S.G. Louie, X. Zhang, Nature 513, 214–218 (2014)

    Article  ADS  Google Scholar 

  15. A. Chernikov, T.C. Berkelbach, H.M. Hill, A. Rigosi, Y. Li, O.B. Aslan, D.R. Reichman, M.S. Hybertsen, T.F. Heinz, Phys. Rev. Lett. 113, 076802 (2014)

    Article  ADS  Google Scholar 

  16. A.T. Hanbicki, M. Currie, G. Kioseoglou, A.L. Friedman, B.T. Jonker, Solid State Commun. 203, 16–20 (2015)

    Article  ADS  Google Scholar 

  17. H.-P. Komsa, A.V. Krasheninnikov, Phys. Rev. B 86, 241201 (2012)

    Article  ADS  Google Scholar 

  18. B. Zhu, X. Chen, X. Cui, Sci. Rep. 5, 9218 (2015)

    Article  ADS  Google Scholar 

  19. S. Park, N. Mutz, T. Schultz, S. Blumstengel, A. Han, A. Aljarb, L.-J. Li, E. J. W. List-Kratochvil, P. Amsalem, N. Koch, 2D Materials, 5, (2018), 025003

  20. T.C. Berkelbach, M.S. Hybertsen, D.R. Reichman, Phys. Rev. B 88, 045318 (2013)

    Article  ADS  Google Scholar 

  21. K. He, N. Kumar, L. Zhao, Z. Wang, K.F. Mak, H. Zhao, J. Shan, Phys. Rev. Lett. 113, 026803 (2014)

    Article  ADS  Google Scholar 

  22. J. Li, Y. Zhong, D. Zhang, J. Phys. 27, 315301 (2015)

    ADS  Google Scholar 

  23. N.V. Leppenen, L.E. Golub, E.L. Ivchenko, Phys. Rev. B 102, 155305 (2020)

    Article  ADS  Google Scholar 

  24. G. Wang, A. Chernikov, M.M. Glazov, T.F. Heinz, X. Marie, T. Amand, B. Urbaszek, Rev. Modern Phys. 90, 021001 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  25. D. Gunlycke, F. Tseng, Phys. Chem. Chem. Phys. 18, 8579–8586 (2016)

    Article  Google Scholar 

  26. M. Van der Donck, M. Zarenia, F.M. Peeters, Phys. Rev. B 97, 195408 (2018)

    Article  ADS  Google Scholar 

  27. M. Van der Donck, M. Zarenia, F.M. Peeters, Phys. Rev. B 96, 035131 (2017)

    Article  ADS  Google Scholar 

  28. K. Wang, K.D. Greve, L.A. Jauregui, A. Sushko, A. High, Y. Zhou, G. Scuri, T. Taniguchi, K. Watanabe, M.D. Lukin, H. Park, P. Kim, Nat. Nanotechnol. 13, 128 (2018)

    Article  ADS  Google Scholar 

  29. A. Chernikov, A.M. van der Zande, H.M. Hill, A.F. Rigosi, A. Velauthapillai, J. Hone, T.F. Heinz, Phys. Rev. Lett. 115, 126802 (2015)

    Article  ADS  Google Scholar 

  30. S. Satpathy, Phys. Rev. B 28, 4585–4592 (1983)

    Article  ADS  Google Scholar 

  31. N.-T.D. Hoang, D.-N. Ly, V.-H. Le, Phys. Rev. B 101, 127401 (2020)

    Article  ADS  Google Scholar 

  32. R. Giachetti, E. Sorace, Ann. Phys. 401, 202–223 (2019)

    Article  ADS  Google Scholar 

  33. G. Breit, Phys. Rev. 34, 553–573 (1929)

    Article  ADS  MathSciNet  Google Scholar 

  34. P. Van Alstine, H.W. Crater, Found. Phys. 27, 67–79 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  35. C.G. Darwin, Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 116, 227–253 (1927)

    Google Scholar 

  36. A.O. Barut, S. Komy, Fortschritte Physik/Progress Phys. 33, 309–318 (1985)

    Article  ADS  Google Scholar 

  37. E.E. Salpeter, H.A. Bethe, Phys. Rev. 84, 1232 (1951)

    Article  ADS  MathSciNet  Google Scholar 

  38. N. Kemmer, Nature 140, 192–193 (1937)

    Article  ADS  Google Scholar 

  39. E. Fermi, C.-N. Yang, Phys. Rev. 76, 1739 (1949)

    Article  ADS  Google Scholar 

  40. A. Barut, N. Ünal, Phys. A 142, 467–487 (1987)

    Article  Google Scholar 

  41. A. Barut, N. Ünal, Phys. A 142, 488–497 (1987)

    Article  Google Scholar 

  42. Barut, AO and Ünal, Nuri, Fortschritte der Physik/Progress of Physics, 33, (1985), 319–332

  43. A. Guvendi, R. Sahin, Y. Sucu, Sci. Rep. 9, 8960 (2019)

    Article  ADS  Google Scholar 

  44. Guvendi, Abdullah and Dogan, Semra Gurtas, arXiv preprint, arXiv:2009.06380, (2020)

  45. Konoplya, RA and Zhidenko, Alexander, Reviews of Modern Physics, 83, (2011), 793

  46. Y. Sucu, N. Unal, J. Math. Phys. 48, 052503 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  47. O.L. Berman, R.Y. Kezerashvili, K. Ziegler, Phys. Rev. A 87, 042513 (2013)

    Article  ADS  Google Scholar 

  48. J. Sabio, F. Sols, F. Guinea, Phys. Rev. B 81, 045428 (2010)

    Article  ADS  Google Scholar 

  49. C. Downing, M. Portnoi, Nat. Commun. 8, 1–6 (2017)

    Article  Google Scholar 

  50. S.G. Dogan, Y. Sucu, Phys. Lett. B 797, 134839 (2019)

    Article  MathSciNet  Google Scholar 

  51. M.D. Harpen, Med. Phys. 31, 57–61 (2004)

    Article  ADS  Google Scholar 

  52. A. Hichri, I. Ben Amara, S. Ayari, S. Jaziri, Journal of Applied Physics, 121, (2017), 235702

  53. Y. Lin, X. Ling, L. Yu, S. Huang, A.L. Hsu, Y.-H. Lee, J. Kong, M.S. Dresselhaus, T. Palacios, Nano Lett. 14, 5569–5576 (2014)

    Article  ADS  Google Scholar 

  54. Peter Collas, David Klein, Springer International Publishing, 1st ed., (2019), 111p

  55. A.J. Musser, M. Liebel, C. Schnedermann, T. Wende, T.B. Kehoe, A. Rao, P. Kukura, Nat. Phys. 11, 352–357 (2015)

    Article  Google Scholar 

  56. D. Moses, J. Wang, A.J. Heeger, N. Kirova, S. Brazovski, Proc. Natl. Acad. Sci. 98, 13496–13500 (2001)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

AG performed the calculations. YS and RS suggested the problem and discussed the physics behind the interaction mechanism. AG and RS analyzed the results. All authors equally contributed to preparation of the manuscript. All the authors have read and approved the final manuscript.

Corresponding author

Correspondence to Abdullah Guvendi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guvendi, A., Sahin, R. & Sucu, Y. Binding energy and decaytime of exciton in dielectric medium. Eur. Phys. J. B 94, 16 (2021). https://doi.org/10.1140/epjb/s10051-020-00030-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-020-00030-6

Navigation