Skip to main content
Log in

Grain boundary segregation and relaxation in nano-grained polycrystalline alloys

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

The present study carries out systematic thermodynamics analysis of Grain Boundary (GB) segregation and relaxation in Nano-Grained (NG) polycrystalline alloys. GB segregation and relaxation is an internal process towards thermodynamic equilibrium, which occurs naturally in NG alloys without any applied loads, causes deformation and generates internal stresses. The analysis comprehensively investigates the multiple coupling effects among chemical concentrations and mechanical stresses in GBs and grains. A hybrid approach of eigenstress and eigenstrain is developed herein to solve the multiple coupling problem. The analysis results indicate that the GB stress and grain stress induced by GB segregation and relaxation can be extremely high in NG alloys, reaching the GPa level, which play an important role in the thermal stability of NG alloys, especially via the coupling terms between stress and concentration. The present theoretic analysis proposes a novel criterion of thermal stability for NG alloys, which is determined by the difference in molar free energy between a NG alloy and its reference single crystal with the same nominal chemical composition. If the difference at a temperature is negative or zero, the NG alloy is thermal stable at that temperature, otherwise unstable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. E. O. Hall, Proc. Phys. Soc. Sect. B 64, 747 (1951).

    ADS  Google Scholar 

  2. N. J. Petch, J. Iron Steel Instit. 174, 25 (1953).

    Google Scholar 

  3. C. C. Yang, and Y. W. Mai, Mater. Sci. Eng.-R-Rep. 79, 1 (2014).

    Google Scholar 

  4. G. Wang, J. Lian, Q. Jiang, S. Sun, and T. Y. Zhang, J. Appl. Phys. 116, 103518 (2014).

    ADS  Google Scholar 

  5. R. I. Babicheva, D. V. Bachurin, S. V. Dmitriev, Y. Zhang, S. W. Kok, L. Bai, and K. Zhou, Philos. Mag. 96, 1598 (2016).

    ADS  Google Scholar 

  6. Y. Z. Zhang, J. B. Liu, and H. T. Wang, Sci. China Tech. Sci. 62, 546 (2019).

    Google Scholar 

  7. K. Lu, Nat Rev Mater 1, 16019 (2016).

    ADS  Google Scholar 

  8. T. Chookajorn, H. A. Murdoch, and C. A. Schuh, Science 337, 951 (2012).

    ADS  Google Scholar 

  9. J. Hu, Y. N. Shi, X. Sauvage, G. Sha, and K. Lu, Science 355, 1292 (2017).

    ADS  Google Scholar 

  10. J. Hui, W. Liu, and B. Wang, Sci. China-Phys. Mech. Astron. 63, 104612 (2020).

    ADS  Google Scholar 

  11. X. Zhou, X. Y. Li, and K. Lu, Science 360, 526 (2018).

    ADS  Google Scholar 

  12. X. Zhou, X. Li, and K. Lu, Phys. Rev. Lett. 122, 126101 (2019).

    ADS  Google Scholar 

  13. J. Weissmüller, Nanostruct. Mater. 3, 261 (1993).

    Google Scholar 

  14. W. C. Johnson, and J. M. Blakely, Surface Segregation in Metals and Alloys (ASM, Metals Park, 1979), pp. 3–23.

    Google Scholar 

  15. H. J. Fecht, Phys. Rev. Lett. 65, 610 (1990).

    ADS  Google Scholar 

  16. J. F. Rico, R. López, and J. I. F. Alonso, Phys. Rev. A 29, 6 (1984).

    ADS  Google Scholar 

  17. X. Zhang, S. Sun, T. Xu, and T. Y. Zhang, Sci. China Tech. Sci. 62, 1565 (2019).

    Google Scholar 

  18. A. R. Kalidindi, T. Chookajorn, and C. A. Schuh, JOM 67, 2834 (2015).

    ADS  Google Scholar 

  19. A. R. Kalidindi, and C. A. Schuh, Acta Mater. 132, 128 (2017).

    ADS  Google Scholar 

  20. F. Abdeljawad, P. Lu, N. Argibay, B. G. Clark, B. L. Boyce, and S. M. Foiles, Acta Mater. 126, 528 (2017).

    ADS  Google Scholar 

  21. R. Dingreville, and S. Berbenni, Acta Mater. 104, 237 (2016).

    ADS  Google Scholar 

  22. T. Y. Zhang, and J. E. Hack, Phys. Stat. Sol. (a) 131, 437 (1992).

    ADS  Google Scholar 

  23. P. Lejček, and S. Hofmann, Acta Mater. 170, 253 (2019).

    ADS  Google Scholar 

  24. H. R. Peng, M. M. Gong, Y. Z. Chen, and F. Liu, Int. Mater. Rev. 62, 303 (2017).

    Google Scholar 

  25. M. Saber, C. C. Koch, and R. O. Scattergood, Mater. Res. Lett. 3, 65 (2015).

    Google Scholar 

  26. J. Weissmüller, J. Mater. Res. 9, 4 (1994).

    ADS  Google Scholar 

  27. R. Kirchheim, Acta Mater. 50, 413 (2002).

    ADS  Google Scholar 

  28. F. Liu, and R. Kirchheim, Scripta Mater. 51, 521 (2004).

    Google Scholar 

  29. F. Liu, and R. Kirchheim, J. Cryst. Growth 264, 385 (2004).

    ADS  Google Scholar 

  30. K. A. Darling, M. A. Tschopp, B. K. VanLeeuwen, M. A. Atwater, and Z. K. Liu, Comput. Mater. Sci. 84, 255 (2014).

    Google Scholar 

  31. J. R. Trelewicz, and C. A. Schuh, Phys. Rev. B 79, 9 (2009).

    Google Scholar 

  32. M. Saber, H. Kotan, C. C. Koch, and R. O. Scattergood, J. Appl. Phys. 113, 063515 (2013).

    ADS  Google Scholar 

  33. M. Saber, H. Kotan, C. C. Koch, and R. O. Scattergood, J. Appl. Phys. 114, 103510 (2013).

    ADS  Google Scholar 

  34. P. Wynblatt, and R. C. Ku, Surf. Sci. 65, 511 (1977).

    ADS  Google Scholar 

  35. J. Friedel, Adv. Phys. 3, 446 (1954).

    ADS  Google Scholar 

  36. F. Tang, X. Liu, H. Wang, C. Hou, H. Lu, Z. Nie, and X. Song, Nanoscale 11, 1813 (2019).

    Google Scholar 

  37. T. Krauß, and S. M. Eich, Acta Mater. 187, 73 (2020).

    ADS  Google Scholar 

  38. T. Y. Zhang, H. Ren, Z. J. Wang, and S. Sun, Acta Mater. 59, 4437 (2011).

    ADS  Google Scholar 

  39. P. W. Voorhees, and W. C. Johnson, Solid State Phys.-Adv. Res. Appl. 59, 1 (2004).

    Google Scholar 

  40. T. Y. Zhang, and H. Ren, Acta Mater. 61, 477 (2013).

    ADS  Google Scholar 

  41. J. Weissmüller, and J. W. Cahn, Acta Mater. 45, 1899 (1997).

    ADS  Google Scholar 

  42. T. Y. Zhang, M. Luo, and W. K. Chan, J. Appl. Phys. 103, 104308 (2008).

    ADS  Google Scholar 

  43. J. Weissmüller, H. L. Duan, and D. Farkas, Acta Mater. 58, 1 (2010).

    ADS  Google Scholar 

  44. J. W. Gibbs, The Scientific Papers (Dover Publications, New York, 1961), pp. 55–354.

    Google Scholar 

  45. D. McLean, Grain Boundaries in Metals (Oxford University Press, London, 1957).

    Google Scholar 

  46. T. Mura, Micromechanics of Defects in Solids, 2nd ed (Martinus Nijhoff Publishers, Dordrecht, 1987).

    MATH  Google Scholar 

  47. H. Ren, X. Yang, Y. Gao, and T. Y. Zhang, Acta Mater. 61, 5487 (2013).

    ADS  Google Scholar 

  48. C. Lemier, and J. Weissmüller, Acta Mater. 55, 1241 (2007).

    ADS  Google Scholar 

  49. T. Mütschele, and R. Kirchheim, Scripta Metall. 21, 135 (1987).

    Google Scholar 

  50. H. Ren, and T. Y. Zhang, Mater. Lett. 130, 176 (2014).

    Google Scholar 

  51. H. Cai, J. W. Mai, Y. X. Gao, H. Huang, S. Sun, and T. Y. Zhang, Sci. China Tech. Sci. 62, 1735 (2019).

    Google Scholar 

  52. Z. K. Liu, B. Li, and H. Lin, J. Phase Equilib. Diffus. 40, 508 (2019).

    Google Scholar 

  53. J. W. Cahn, Acta Metall. 9, 795 (1961).

    Google Scholar 

  54. J. Zhu, Y. Gao, D. Wang, J. Li, T. Y. Zhang, and Y. Wang, Mater. Horiz. 6, 515 (2019).

    Google Scholar 

  55. T. Y. Zhang, Z. J. Wang, and W. K. Chan, Phys. Rev. B 81, 195427 (2010).

    ADS  Google Scholar 

  56. A. Pathak, K. K. Mehta, and A. K. Singh, J. Appl. Res. Tech. 15, 78 (2017).

    Google Scholar 

  57. A. T. Dinsdale, Calphad 15, 317 (1991).

    Google Scholar 

  58. H. Gleiter, Prog. Mater. Sci. 33, 223 (1989).

    Google Scholar 

  59. C. Suryanarayana, Int. Mater. Rev. 40, 41 (1995).

    Google Scholar 

  60. J. Weissmuller, and C. Lemier, Philos. Mag. Lett. 80, 411 (2000).

    ADS  Google Scholar 

  61. X. Y. Zhou, B. L. Huang, and T. Y. Zhang, Phys. Chem. Chem. Phys. 18, 21508 (2016).

    Google Scholar 

  62. X. Y. Zhou, H. Ren, B. L. Huang, and T. Y. Zhang, Sci. China Tech. Sci. 57, 680 (2014).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tong-Yi Zhang or Sheng Sun.

Additional information

This work was supported by the National Key R&D Program of China (Grant No. 2017YFB0701604). Sheng Sun also acknowledge the National Natural Science Foundation of China (Grant No. 11672168) for financial support.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, TY., Gao, YX. & Sun, S. Grain boundary segregation and relaxation in nano-grained polycrystalline alloys. Sci. China Phys. Mech. Astron. 64, 224611 (2021). https://doi.org/10.1007/s11433-020-1614-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-020-1614-5

Navigation