Skip to main content
Log in

Current-driven transformations of a skyrmion tube and a bobber in stepped nanostructures of chiral magnets

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Magnetic skyrmion tubes and bobbers are two types of different nanoscale spin configurations that can coexist in nanostructures of chiral magnets. They are then proposed to be utilized as binary bits to build racetrack memory devices. The ability to manipulate the two magnetic objects controllably by current in nanostructures is the prerequisite to realize the device. Here, we demonstrate by numerical simulations that a magnetic bobber and a skyrmion tube can be transformed to each other using spin-polarized current in nanostripes with stepped shape. We also show such stepped nanostructures can be readily applied as the write head for the skyrmion-bobber-based racetrack memory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. S. P. Parkin, M. Hayashi, and L. Thomas, Science 320, 190 (2008).

    Article  ADS  Google Scholar 

  2. S. Parkin, and S. H. Yang, Nat. Nanotech. 10, 195 (2015).

    Article  ADS  Google Scholar 

  3. S. Zhang, and Z. Li, Phys. Rev. Lett. 93, 127204 (2004), arXiv: condmat/0407174.

    Article  ADS  Google Scholar 

  4. D. Chiba, G. Yamada, T. Koyama, K. Ueda, H. Tanigawa, S. Fukami, T. Suzuki, N. Ohshima, N. Ishiwata, Y. Nakatani, and T. Ono, Appl. Phys. Express 3, 073004 (2010).

    Article  ADS  Google Scholar 

  5. K. S. Ryu, L. Thomas, S. H. Yang, and S. Parkin, Nat. Nanotech. 8, 527 (2013).

    Article  ADS  Google Scholar 

  6. Y. Zhou, Natl. Sci. Rev. 6, 210 (2019).

    Article  Google Scholar 

  7. J. Tang, L. Kong, W. Wang, H. Du, and M. Tian, Chin. Phys. B 28, 087503 (2019).

    Article  ADS  Google Scholar 

  8. S. Wang, J. Tang, W. Wang, L. Kong, M. Tian, and H. Du, J. Low Temp. Phys. 197, 321 (2019).

    Article  ADS  Google Scholar 

  9. S. Muhlbauer, B. Binz, F. Jonietz, C. Pfleiderer, A. Rosch, A. Neubauer, R. Georgii, and P. Boni, Science 323, 915 (2009), arXiv: 0902.1968.

    Article  ADS  Google Scholar 

  10. S. L. Zhang, A. Bauer, D. M. Burn, P. Milde, E. Neuber, L. M. Eng, H. Berger, C. Pfleiderer, G. van der Laan, and T. Hesjedal, Nano Lett. 16, 3285 (2016), arXiv: 1606.01187.

    Article  ADS  Google Scholar 

  11. Y. J. Zhang, Q. Zheng, X. R. Zhu, Z. Yuan, and K. Xia, Sci. China-Phys. Mech. Astron. 63, 277531 (2020).

    Article  ADS  Google Scholar 

  12. F. Jonietz, S. Muhlbauer, C. Pfleiderer, A. Neubauer, W. Munzer, A. Bauer, T. Adams, R. Georgii, P. Boni, R. A. Duine, K. Everschor, M. Garst, and A. Rosch, Science 330, 1648 (2010), arXiv: 1012.3496.

    Article  ADS  Google Scholar 

  13. X. Z. Yu, N. Kanazawa, W. Z. Zhang, T. Nagai, T. Hara, K. Kimoto, Y. Matsui, Y. Onose, and Y. Tokura, Nat. Commun. 3, 988 (2012).

    Article  ADS  Google Scholar 

  14. J. Sampaio, V. Cros, S. Rohart, A. Thiaville, and A. Fert, Nat. Nanotech. 8, 839 (2013).

    Article  ADS  Google Scholar 

  15. A. Fert, V. Cros, and J. Sampaio, Nat. Nanotech. 8, 152 (2013).

    Article  ADS  Google Scholar 

  16. H. Du, X. Zhao, F. N. Rybakov, A. B. Borisov, S. Wang, J. Tang, C. Jin, C. Wang, W. Wei, N. S. Kiselev, Y. Zhang, R. Che, S. Blügel, and M. Tian, Phys. Rev. Lett. 120, 197203 (2018).

    Article  ADS  Google Scholar 

  17. X. Zhao, C. Jin, C. Wang, H. Du, J. Zang, M. Tian, R. Che, and Y. Zhang, Proc. Natl. Acad. Sci. USA 113, 4918 (2016).

    Article  ADS  Google Scholar 

  18. F. N. Rybakov, A. B. Borisov, S. Blügel, and N. S. Kiselev, Phys. Rev. Lett. 115, 117201 (2015), arXiv: 1508.04786.

    Article  ADS  Google Scholar 

  19. F. N. Rybakov, A. B. Borisov, S. Blügel, and N. S. Kiselev, New J. Phys. 18, 045002 (2016), arXiv: 1601.05752.

    Article  ADS  Google Scholar 

  20. F. Zheng, F. N. Rybakov, A. B. Borisov, D. Song, S. Wang, Z. A. Li, H. Du, N. S. Kiselev, J. Caron, A. Kovács, M. Tian, Y. Zhang, S. Blügel, and R. E. Dunin-Borkowski, Nat. Nanotech. 13, 451 (2018).

    Article  ADS  Google Scholar 

  21. A. Vansteenkiste, J. Leliaert, M. Dvornik, M. Helsen, F. Garcia-Sanchez, and B. Van Waeyenberge, AIP Adv. 4, 107133 (2014), arXiv: 1406.7635.

    Article  ADS  Google Scholar 

  22. F. Kagawa, H. Oike, W. Koshibae, A. Kikkawa, Y. Okamura, Y. Taguchi, N. Nagaosa, and Y. Tokura, Nat. Commun. 8, 1332 (2017), arXiv: 1711.03286.

    Article  ADS  Google Scholar 

  23. W. F. Jr. Brown, J. Appl. Phys. 34, 1319 (1963).

    Article  ADS  Google Scholar 

  24. W. Jiang, P. Upadhyaya, W. Zhang, G. Yu, M. B. Jungfleisch, F. Y. Fradin, J. E. Pearson, Y. Tserkovnyak, K. L. Wang, O. Heinonen, S. G. E. te Velthuis, and A. Hoffmann, Science 349, 283 (2015).

    Article  ADS  Google Scholar 

  25. S. Sugimoto, W. Koshibae, S. Kasai, N. Ogawa, Y. Takahashi, N. Nagaosa, and Y. Tokura, Sci. Rep. 10, 1009 (2020).

    Article  ADS  Google Scholar 

  26. L. Peng, Y. Zhang, M. He, B. Ding, W. Wang, H. Tian, J. Li, S. Wang, J. Cai, G. Wu, J. P. Liu, M. J. Kramer, and B. Shen, npj Quant. Mater. 2, 30 (2017).

    Article  ADS  Google Scholar 

  27. P. F. Bessarab, V. M. Uzdin, and H. Jónsson, Comput. Phys. Commun. 196, 335 (2015), arXiv: 1502.05065.

    Article  ADS  Google Scholar 

  28. Y. Tokunaga, X. Z. Yu, J. S. White, H. M. Rønnow, D. Morikawa, Y. Taguchi, and Y. Tokura, Nat. Commun. 6, 7638 (2015), arXiv: 1503.05651.

    Article  ADS  Google Scholar 

  29. M. Redies, F. R. Lux, J. P. Hanke, P. M. Buhl, G. P. Müller, N. S. Kiselev, S. Blügel, and Y. Mokrousov, Phys. Rev. B 99, 140407 (2019), arXiv: 1811.01584.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Tang.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11804343, and 11974021), the Key Research Program of the Chinese Academy of Sciences (Grant No. KJZD-SW-M01). We acknowledge N. S. Kiselev for helpful discussions.

Supporting Information

The supporting information is available online at phys.scichina.com and http://link.springer.com/journal/11433. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, J., Wu, Y., Hu, Q. et al. Current-driven transformations of a skyrmion tube and a bobber in stepped nanostructures of chiral magnets. Sci. China Phys. Mech. Astron. 64, 227511 (2021). https://doi.org/10.1007/s11433-020-1619-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-020-1619-8

Navigation