Skip to main content
Log in

Quantum speedup in adaptive boosting of binary classification

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

In classical machine learning, a set of weak classifiers can be adaptively combined for improving the overall performance, a technique called adaptive boosting (or AdaBoost). However, constructing a combined classifier for a large data set is typically resource consuming. Here we propose a quantum extension of AdaBoost, demonstrating a quantum algorithm that can output the optimal strong classifier with a quadratic speedup in the number of queries of the weak classifiers. Our results also include a generalization of the standard AdaBoost to the cases where the output of each classifier may be probabilistic. We prove that the query complexity of the non-deterministic classifiers is the same as those of deterministic classifiers, which may be of independent interest to the classical machine-learning community. Additionally, once the optimal classifier is determined by our quantum algorithm, no quantum resources are further required. This fact may lead to applications on near term quantum devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Y. Freund, and R. E. Schapire, in International Conference on Machine Learning (Margan Kaufmann, San Francisco, 1996).

    Google Scholar 

  2. M. Mohri, A. Rostamizadeh, and A. Talwalkar, Fundations of Machine Learning (The MIT Press, Cambridge, 2012).

    MATH  Google Scholar 

  3. K. K. Kong, and K. S. Hong, Pattern Recogn. Lett. 68, 63 (2015).

    Article  Google Scholar 

  4. B. Markoski, Z. Ivanković, L. Ratgeber, P. Pecev, and D. Glušac, Acta Polytech. Hungar. 12, 189 (2015).

    Google Scholar 

  5. E. Owusu, Y. Zhan, and Q. R. Mao, Expert Syst. Appl. 41, 3383 (2014).

    Article  Google Scholar 

  6. Y. L. Jiang, Y. F. Shen, Y. Liu, and W. C. Liu, Math. Prob. Eng. 2015, 1 (2015).

    Google Scholar 

  7. X. Li, L. Wang, and E. Sung, Eng. Appl. Artif. Intel. 21, 785 (2008).

    Article  Google Scholar 

  8. B. P. Roe, H. J. Yang, J. Zhu, Y. Liu, I. Stancu, and G. McGregor, Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment (Elsevier, Amsterdam, 2005).

    Google Scholar 

  9. C. X. Zhang, and J. S. Zhang, Pattern Recogn. Lett. 29, 1524 (2008).

    Article  Google Scholar 

  10. L. K. Grover, in Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, STOC’ 96, Association for Computing Machinery (New York, 1996), pp. 212–219.

    Chapter  Google Scholar 

  11. A. Y. Kitaev, arXiv: 9511026.

  12. P. W. Shor, SIAM J. Comput. 26, 1484 (1997).

    Article  MathSciNet  Google Scholar 

  13. A. W. Harrow, A. Hassidim, and S. Lloyd, Phys. Rev. Lett. 103, 150502 (2009), arXiv: 0811.3171.

    Article  ADS  MathSciNet  Google Scholar 

  14. A. M. Childs, R. Kothari, and R. D. Somma, SIAM J. Comput. 46, 1920 (2017).

    Article  MathSciNet  Google Scholar 

  15. P. J. Coles, S. Eidenbenz, S. Pakin, A. Adedoyin, J. Ambrosiano, P. Anisimov, W. Casper, G. Chennupati, C. Coffrin, H. Djidjev, D. Gunter, S. Karra, N. Lemons, S. Z. Lin, A. Lokhov, A. Malyzhenkov, D. Mascarenas, S. Mniszewski, B. Nadiga, D. OMalley, D. Oyen, L. Prasad, R. Roberts, P. Romero, N. Santhi, N. Sinitsyn, P. Swart, M. Vuffray, J. Wendelberger, B. Yoon, R. Zamora, and W. Zhu, arXiv: 1804.03719.

  16. H. Buhrman, and R. de Wolf, Theor. Comput. Sci. 288, 21 (2002).

    Article  Google Scholar 

  17. J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, and S. Lloyd, Nature 549, 195 (2017), arXiv: 1611.09347.

    Article  ADS  Google Scholar 

  18. C. Ciliberto, M. Herbster, A. D. Ialongo, M. Pontil, A. Rocchetto, S. Severini, and L. Wossnig, Proc. Roy. Soc. A: Math. Phys. Eng. Sci. 474, 20170551 (2018).

    Article  ADS  Google Scholar 

  19. X. D. Cai, D. Wu, Z. E. Su, M. C. Chen, X. L. Wang, L. Li, N. L. Liu, C. Y. Lu, and J. W. Pan, Phys. Rev. Lett. 114, 110504 (2015), arXiv: 1409.7770.

    Article  ADS  Google Scholar 

  20. Z. Li, X. Liu, N. Xu, and J. Du, Phys. Rev. Lett. 114, 140504 (2015).

    Article  ADS  Google Scholar 

  21. V. Dunjko, J. M. Taylor, and H. J. Briegel, Phys. Rev. Lett. 117, 130501 (2016), arXiv: 1610.08251.

    Article  ADS  MathSciNet  Google Scholar 

  22. M. Schuld, M. Fingerhuth, and F. Petruccione, Europhy. Lett. 119, 60002 (2017), arXiv: 1703.10793.

    Article  ADS  Google Scholar 

  23. P. Rebentrost, M. Mohseni, and S. Lloyd, Phys. Rev. Lett. 113, 130503 (2014), arXiv: 1307.0471.

    Article  ADS  Google Scholar 

  24. I. Cong, and L. Duan, New J. Phys. 18, 073011 (2016), arXiv: 1510.00113.

    Article  ADS  Google Scholar 

  25. S. Lloyd, M. Mohseni, and P. Rebentrost, Nat. Phys. 10, 631 (2014), arXiv: 1307.0401.

    Article  Google Scholar 

  26. M. Sasaki, A. Carlini, and R. Jozsa, Phys. Rev. A 64, 022317 (2001), arXiv: quant-ph/0102020.

    Article  ADS  Google Scholar 

  27. J. Bae, and L. C. Kwek, J. Phys. A-Math. Theor. 48, 083001 (2015), arXiv: 1707.02571.

    Article  ADS  Google Scholar 

  28. S. Arunachalam, and R. Maity. in Proceedings of the International Conference on Machine Learning, edited by H. Daume, and A. Singh (2020), pp. 9063–9073.

  29. A. Izdebski, and R. De Wolf, arXiv: 2009.08360.

  30. M. Kearns, and L. Valiant, J. ACM 41, 67 (1994).

    Article  Google Scholar 

  31. D. Dervovic, M. Herbster, P. Mountney, S. Severini, N. Usher, and L. Wossnig, arXiv: 1802.08227.

  32. A. W. Harrow, and A. Y. Wei, Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms (ACM Press, New York, 2020), pp. 193–212.

    Book  Google Scholar 

  33. H. J. Zhu, R. Kueng, M. Grassl, and D. Gross, arXiv: 1609.08172.

  34. Y. X. Du, M.-H. Hsieh, T. L. Liu, and D. C. Tao, arXiv: 1809.06056.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Min-Hsiu Hsieh or Man-Hong Yung.

Additional information

This work was supported by the Natural Science Foundation of Guangdong Province (Grant No. 2017B030308003), the Key R&D Program of Guangdong Province (Grant No. 2018B030326001), the Science, Technology and Innovation Commission of Shenzhen Municipality (Grant Nos. JCYJ20170412152620376, JCYJ20170817105046702, and KYTDPT20181011104202253), the National Natural Science Foundation of China (Grant Nos. 11875160, and U1801661), the Economy, Trade and Information Commission of Shenzhen Municipality (Grant No. 201901161512), and Guangdong Provincial Key Laboratory (Grant No. 2019B121203002). We sincerely thank Dr. Srinivasan Arunachalam and Mr. Reevu Maity for their helpful discussions.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Ma, Y., Hsieh, MH. et al. Quantum speedup in adaptive boosting of binary classification. Sci. China Phys. Mech. Astron. 64, 220311 (2021). https://doi.org/10.1007/s11433-020-1638-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-020-1638-5

PACS number(s)

Navigation