Skip to main content
Log in

Multi-core–shell-structured LiFePO4@Na3V2(PO4)3@C composite for enhanced low-temperature performance of lithium-ion batteries

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

In this work, a multi-core–shell-structured LiFePO4@Na3V2(PO4)3@C (LFP@NVP@C) composite was successfully designed and prepared to address inferior low-temperature performance of LiFePO4 cathode for lithium-ion batteries. Transmission electron microscopy (TEM) confirms the inner NVP and outer carbon layers co-existed on the surface of LFP particle. When evaluated at low-temperature operation, LFP@NVP@C composite exhibits an evidently enhanced electrochemical performance in term of higher capacity and lower polarization, compared with LFP@C. Even at − 10 °C with 0.5C, LFP@NVP@C delivers a discharge capacity of ca. 96.9 mAh·g−1 and discharge voltage of ca. 3.3 V, which is attributed to the beneficial contribution of NVP coating. NASICON-structured NVP with an open framework for readily insertion/desertion of Li+ will effectively reduce the polarization for the electrochemical reactions of the designed LFP@NVP@C composite.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Dimesso L, Forster C, Jaegermann W, Khanderi JP, Tempel H, Popp A, Engstler J, Schneider JJ, Sarapulova A, Mikhailova D, Schmitt LA, Oswald S, Ehrenberg H. Developments in nanostructured LiMPO4 (M = Fe Co, Ni, Mn) composites based on three dimensional carbon architecture. Chem Soc Rev. 2012;41(15):5068.

    Article  CAS  Google Scholar 

  2. Li X, Jiang YZ, Li XK, Jiang HX, Liu JL, Feng J. Electrochemical property of LiFePO4/C composite cathode with different carbon sources. Rare Met. 2018;37(9):743.

    Article  CAS  Google Scholar 

  3. Zhou JX, Shen XQ, Jing MX, Zhan Y. Synthesis and electrochemical performances of spherical LiFePO4 cathode materials for Li-ion batteries. Rare Met. 2006;25(1):19.

    Article  Google Scholar 

  4. Wang B, Abdulla W, Wang D, Zhao XS. A three-dimensional porous LiFePO4 cathode material modified with a nitrogen-doped graphene aerogel for high-power lithium ion batteries. Energy Environ Sci. 2015;8(3):869.

    Article  CAS  Google Scholar 

  5. Wang B, Liu T, Liu A, Liu GJ, Wang L, Gao TT, Wang DL, Zhao XS. A hierarchical porous C@LiFePO4/carbon nanotubes microsphere composite for high-rate lithium-ion batteries: combined experimental and theoretical study. Adv Energy Mater. 2016;6:1600426.

    Article  Google Scholar 

  6. Liu TF, Zhang YP, Chen C, Lin Z, Zhang SQ, Lu J. Sustainability-inspired cell design for a fully recyclable sodium ion battery. Nat Commun. 2019;10:1.

    Article  Google Scholar 

  7. Wang X, Feng Z, Hou X, Liu L, He M, He X, Huang JT, Wen Z. Fluorine doped carbon coating of LiFePO4 as a cathode material for lithium-ion batteries. Chem Eng J. 2020;379:122371.

    Article  CAS  Google Scholar 

  8. Zhang Y, Xin P, Yao Q. Electrochemical performance of LiFePO4/C synthesized by sol–gel method as cathode for aqueous lithium ion batteries. J Alloys Compd. 2018;741:404.

    Article  CAS  Google Scholar 

  9. Busson C, Blin MA, Guichard P, Soudan P, Crosnier O, Guyomard D, Lestriez B. A primed current collector for high performance carbon-coated LiFePO4 electrodes with no carbon additive. J Power Sources. 2018;406:7.

    Article  CAS  Google Scholar 

  10. Liu T, Zhao L, Wang D, Zhu J, Wang B, Guo C. Carbon-coated single-crystalline LiFePO4 nanocomposites for high-power Li-ion batteries: the impact of minimization of the precursor particle size. RSC Adv. 2014;4(20):10067.

    Article  CAS  Google Scholar 

  11. Liao XZ, Ma ZF, Gong Q, He YS, Pei L, Zeng LJ. Low-temperature performance of LiFePO4/C cathode in a quaternary carbonate-based electrolyte. Electrochem Commun. 2008;10:691.

    Article  CAS  Google Scholar 

  12. Chen K, Yin S, Xue D. Active La–Nb–O compounds for fast lithium-ion energy storage. Tungsten. 2019;1:287.

    Article  Google Scholar 

  13. Liao L, Zuo P, Ma Y, Chen X, An Y, Gao Y, Yin G. Effects of temperature on charge/discharge behaviors of LiFePO4 cathode for Li-ion batteries. Electrochim Acta. 2012;60(15):269.

    Article  CAS  Google Scholar 

  14. Li C, Hua N, Wang C, Kang X, Tuerdi W, Han Y. Effect of Mn2+-doping in LiFePO4 and the low temperature electrochemical performances. J Alloys Compd. 2011;509:1897.

    Article  CAS  Google Scholar 

  15. Liao L, Cheng X, Ma Y, Zuo P, Fang W, Yin G, Gao Y. Fluoroethylene carbonate as electrolyte additive to improve low temperature performance of LiFePO4 electrode. Electrochim Acta. 2013;87:466.

    Article  CAS  Google Scholar 

  16. Xu CC, Wang Y, Li L, Wang YJ, Jiao LF, Yuan HT. Hydrothermal synthesis mechanism and electrochemical performance of LiMn0.6Fe0.4PO4 cathode material. Rare Met. 2019;38(1):29.

    Article  CAS  Google Scholar 

  17. Xu BL, Qi SH, Jin MM, Cai XY, Lai LF, Sun ZT, Han XG, Lin ZF, Shao H, Peng P, Xiang ZH, Elshof JET, Tan R, Liu C, Zhang ZX, Duan XC, Ma JM. 2020 roadmap on two-dimensional materials for energy storage and conversion. Chin Chem Lett. 2019;30(12):2053.

    Article  CAS  Google Scholar 

  18. Yang G, Jiang CY, He XM, Ying JR, Gao J. Preparation of Li3V2(PO4)3/LiFePO4 composite cathode material for lithium ion batteries. Ionics. 2013;19:1247.

    Article  CAS  Google Scholar 

  19. Rui XH, Jin Y, Feng XY, Zhang LC, Chen CH. A comparative study on the low-temperature performance of LiFePO4/C and Li3V2(PO4)3/C cathodes for lithium-ion batteries. J Power Sources. 2011;196(4):2109.

    Article  CAS  Google Scholar 

  20. Liu T, Wang B, Gu X, Wang L, Ling M, Liu G, Wang D, Zhang S. All-climate sodium ion batteries based on the NASICON electrode materials. Nano Energy. 2016;30:756.

    Article  CAS  Google Scholar 

  21. Jian Z, Zhao L, Pan H, Hu YS, Li H, Chen W, Chen L. Carbon coated Na3V2(PO4)3 as novel electrode material for sodium ion batteries. Electrochem Commun. 2013;14(1):86.

    Article  Google Scholar 

  22. Gaubicher J, Wurm C, Goward G, Masquelier C, Nazar L. Rhombohedral form of Li3V2(PO4)3 as a cathode in Li-ion batteries. Chem Mater. 2000;12:3240.

    Article  CAS  Google Scholar 

  23. Liu X, Li L, Li G. Partial surface phase transformation of Li3VO4 that enables superior rate performance and fast lithium-ion storage. Tungsten. 2019;1:276.

    Article  Google Scholar 

  24. Hongtong R, Thanwisai P, Yensano R, Nash J, Srilomsak S, Meethong N. Core-shell electrospun and doped LiFePO4/FeS/C composite fibers for Li-ion batteries. J Alloys Compd. 2019;804:339.

    Article  CAS  Google Scholar 

  25. Wang Y, Alsmeyer DC, McCreery RL. Raman spectroscopy of carbon materials: structural basis of observed spectra. Chem Mater. 1990;2(5):557.

    Article  CAS  Google Scholar 

  26. Ren L, Li XE, Wang FF, Han Y. Spindle LiFePO4 particles as cathode of lithium-ion batteries synthesized by solvothermal method with glucose as auxiliary reductant. Rare Met. 2015;34(10):731.

    Article  CAS  Google Scholar 

  27. Iermakova DI, Dugas R, Palacín MR, Ponrouch A. On the comparative stability of Li and Na metal anode interfaces in conventional alkyl carbonate electrolytes. J Electrochem Soc. 2015;162:A7060.

    Article  CAS  Google Scholar 

  28. Liao L, Zuo P, Ma Y, An Y, Yin G, Gao Y. Effects of fluoroethylene carbonate on low temperature performance of mesocarbon microbeads anode. Electrochim Acta. 2012;74:260.

    Article  CAS  Google Scholar 

  29. Gu XX, Xin LB, Li Y, Dong F, Fu M, Hou YL. Highly reversible Li–Se batteries with ultra-lightweight N, S-codoped graphene blocking layer. Nano Micro Lett. 2018;10:59.

    Article  Google Scholar 

  30. Tao Z, Xiao J, Wang H, Zhang F. Novel cathode structure based on spiral carbon nanotubes for lithium–sulfur batteries. J Electroanal Chem. 2019;851:113477.

    Article  CAS  Google Scholar 

  31. Sitinamaluwa HS, Li HN, Wasalathilake KC, Wolff A, Tesfamichael T, Zhang S, Yan C. Nanoporous SiOx coated amorphous silicon anode material with robust mechanical behavior for high-performance rechargeable Li-ion batteries. Nano Mater Sci. 2019;1:70.

    Article  Google Scholar 

  32. Liu T, Zhao SX, Gou LL, Wu X, Nan CW. Electrochemical performance of Li-rich cathode material, 0.3Li2MnO3–0.7LiMn1/3Ni1/3Co1/3O2 microspheres with F-doping. Rare Met. 2019;38(3):189.

    Article  CAS  Google Scholar 

  33. Gu XX, Yang Z, Qiao S, Shao CB, Ren XL, Yang JJ. Exploiting methylated amino resin as a multifunctional binder for high-performance lithium–sulfur batteries. Rare Met. 2020. https://doi.org/10.1007/s12598-020-01409-1.

    Article  Google Scholar 

  34. Wang B, Wang Q, Xu B, Liu T, Wang D, Zhao G. The synergy effect on Li storage of LiFePO4 with activated carbon modifications. RSC Adv. 2013;3(43):20024.

    Article  CAS  Google Scholar 

  35. Gu XX, Lai C. One dimensional nanostructures contribute better Li–S and Li–Se batteries: progress, challenges and perspectives. Energy Stor Mater. 2019;23:190.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 51902036), the Natural Science Foundation of Chongqing Science & Technology Commission (No. cstc2019jcyj-msxm1407), the Natural Science Foundation of Chongqing Technology and Business University (No. 1952009), the Science and Technology Research Program of Chongqing Municipal Education Commission (Nos. KJQN201900826 and KJQN201800808), the Venture & Innovation Support Program for Chongqing Overseas Returnees (No. CX2018129), the Innovation Group of New Technologies for Industrial Pollution Control of Chongqing Education Commission (No. CXQT19023), the Engineering and Physical Sciences Research Council (EPSRC) (No. EP/S032886/1) and the Key Disciplines of Chemical Engineering and Technology in Chongqing Colleges and Universities during the 13th Five Year Plan.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xing-Xing Gu or Tie-Feng Liu.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1142 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, XX., Qiao, S., Ren, XL. et al. Multi-core–shell-structured LiFePO4@Na3V2(PO4)3@C composite for enhanced low-temperature performance of lithium-ion batteries. Rare Met. 40, 828–836 (2021). https://doi.org/10.1007/s12598-020-01669-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-020-01669-x

Keywords

Navigation