Skip to main content
Log in

Improving phase transition temperature of VO2 via Ge doping: a combined experimental and theoretical study

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Enhancing the semiconductor–metal phase transition temperature (TSMT) of VO2 is of great consequence for further exploring the potential applications of VO2 at elevated temperatures. In this study, Ge4+-doped VO2 (GexV1−xO2) samples were prepared by the hydrothermal and annealing approach. X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), differential scanning calorimetry (DSC) and resistivity–temperature (R-T) analyses were used to investigate the influence of Ge doping on the lattice structures and phase transition properties of GexV1–xO2 samples. We found that the lattice parameter of GexV1−xO2 decreased with the Ge concentration increasing from 2 at% to 18 at%, which was further supported by density functional theory (DFT)-based first-principle simulations. TSMT firstly increased from 64.5 to 73.0 °C at 8 at% Ge and then decreased to 71.5 °C at higher Ge concentration. Furthermore, DFT analysis revealed that the impact of lattice distortion induced by Ge doping rather than the changes in electronic structure is more pronounced on modulating TSMT of GexV1−xO2. The present work has pointed out the direction that the TSMT could be enhanced and illustrated the physical reason behind the regulation of TSMT in ions-doped VO2 systems.

Graphic Abstract

The d (logρ)/dT vs T curves are plotted for GexV1−xO2 (0≤x≤0.18) samples (a) un-doped VO2 ; (b) 2%; (c) 8%; (d) 18%, the transition temperatures upon heating, Th, and cooling, Tc. The difference between Th and Tc gives the hysteresis width, ΔTt, while the FWHM determines the sharpness of the semiconductor-to-metal transition

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Morin FJ. Oxides which show a metal-to-insulator transition at the neel temperature. Phys Rev Lett. 1959;3(1):34.

    Article  CAS  Google Scholar 

  2. Goodenough JB. The two components of the crystallographic transition in VO2. J Solid State Chem. 1971;3(4):490.

    Article  CAS  Google Scholar 

  3. Aetukuri NB, Gray AX, Drouard M, Cossale M, Gao L, Reid AH, Roopali K, Hendrik O, Catherine AJ, Elke A, Kevin PR, Hermann AD, Mahesh GS, Stuart SPP. Control of the metal–insulator transition in vanadium dioxide by modifying orbital occupancy. Nature Phys. 2013;9(10):661.

    Article  CAS  Google Scholar 

  4. Guinneton F, Sauquesb L, Valmalettea JC, Crosb F, Gavarria JR. Comparative study between nanocrystalline powder and thin film of vanadium dioxide VO2: electrical and infrared properties. J Phys Chem Solids. 2000;62(7):1229.

    Article  Google Scholar 

  5. Kim BJ, Lee YW, Chae BG, Yun SJ, Oh SY, Kim HT, Lim YS. Temperature dependence of the first-order metal-insulator transition in VO2 and programmable critical temperature sensor. Appl Phys Lett. 2007;90(2):3515.

    Article  Google Scholar 

  6. Haras A, Witko M, Salahub DR, Hermann KT, okarz R. Electronic properties of the VO2 (011) surface: density functional cluster calculations. Surface Sci. 2001;491(2):77.

    Article  CAS  Google Scholar 

  7. Zhou J, Gao Y, Zhang Z, Luo H, Cao C, Chen Z, Dai L, Liu XL. VO2 thermochromic smart window for energy savings and generation. Sci Rep. 2013;3:3029.

    Article  Google Scholar 

  8. Cui Y, Ke Y, Liu C, Chen Z, Wang N, Zhang L, Zhou Y, Wang S, Gao Y, Long Y. Thermochromic VO2 for energy-efficient smart windows. Joule. 2018;2(9):1707.

    Article  CAS  Google Scholar 

  9. Ryckman JD, Diez-Blanco V, Nag J, Marvel RE, Choi BK, Haglund RF, Weiss SM. Photothermal optical modulation of ultracompact hybrid Si-VO2 ring resonators. Opt Express. 2012;20:12.

    Article  Google Scholar 

  10. Zhu Y, Vegesna S, Zhao Y, Kuryatkov V, Holtz M, Fan Z, Saed M, Bernussi AA. Tunable dual-band terahertz metamaterial bandpass filters. Opt Lett. 2013;38(14):2382.

    Article  Google Scholar 

  11. Wu YF, Zou CW, Fan LL, Liu QH, Chen S, Huang WF, Wu ZY, Chen FH, Liao GM. Decoupling the lattice distortion and charge doping effects on the phase transition behavior of VO2 by titanium (Ti4+) doping. Sci Rep. 2015;5:9328.

    Article  CAS  Google Scholar 

  12. Zhang Y, Zheng J, Hu T, Tian F, Meng C. Synthesis and supercapacitor electrode of VO2(B)/C core–shell composites with a pseudocapacitance in aqueous solution. Appl Surface Sci. 2016;371:189.

    Article  CAS  Google Scholar 

  13. Li CI, Lin JC, Liu HJ, Chu MW, Chen HW, Ma CH, Tsai CY, Huang HW, Lin HJ, Liu HL, Chiu PW, Chu YH. van der Waal epitaxy of flexible and transparent VO2 film on Muscovite. Chem Mater. 2016;28(11):3914.

    Article  CAS  Google Scholar 

  14. Guo D, Ling C, Wang C, Wang D, Li J, Zhao Z, Wang Z, Zhao Y, Zhang J, Jin H. Hydrothermal one-step synthesis of highly dispersed M-phase VO2 nanocrystals and application to flexible thermochromic film. ACS Appl Mater Interfaces. 2018;10(34):28627.

    Article  CAS  Google Scholar 

  15. Jo YR, Myeong SH, Kim BJ. Role of annealing temperature on the sol–gel synthesis of VO2 nanowires with in situ characterization of their metal–insulator transition. RSC Adv. 2018;8(10):5158.

    Article  CAS  Google Scholar 

  16. Chain EE. Optical properties of vanadium dioxide and vanadium pentoxide thin films. Appl Optics. 1991;30(19):2782.

    Article  CAS  Google Scholar 

  17. Nag J, Haglund RF Jr. Synthesis of vanadium dioxide thin films and nanoparticles. J Phys: Condens Matter. 2008;20(26):264016.

    Google Scholar 

  18. Briggs Ryan M, Pryce Imogen M, Atwater HA. Compact silicon photonic waveguide modulator based on the vanadium dioxide metal-insulator phase transition. Opt Express. 2010;18(11):11192.

    Article  CAS  Google Scholar 

  19. Benkahoul M, Chaker M, Margot J, Haddad E, Kruzelecky R, Wong B, Jamroz W, Poinas P. Thermochromic VO2 film deposited on Al with tunable thermal emissivity for space applications. Solar Energy Mater Solar Cells. 2011;95(12):3504.

    Article  CAS  Google Scholar 

  20. Liu M, Hwang HY, Tao H, Strikwerda AC, Fan K, Keiser GR, Sternbach AJ, West KG, Kittiwatanakul S, Lu J, Wolf SA, Omenetto FG, Zhang X, Nelson KA, Averitt RD. Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial. Nature. 2012;487(7407):345.

    Article  CAS  Google Scholar 

  21. Wang S, Owusu KA, Mai L, Ke Y, Zhou Y, Hu P, Magdassi S, Long Y. Vanadium dioxide for energy conservation and energy storage applications: synthesis and performance improvement. Appl Energy. 2018;211:200.

    Article  CAS  Google Scholar 

  22. Yang S, Gong Y, Liu Z, Zhan L, Hashim DP, Ma L, Vajtai R, Ajayan PM. Bottom-up approach toward single-crystalline VO2-graphene ribbons as cathodes for ultrafast lithium storage. Nano Lett. 2013;13(4):1596.

    Article  CAS  Google Scholar 

  23. Mai L, Wei Q, An Q, Tian X, Zhao Y, Xu X, Xu L, Chang L, Zhang Q. Nanoscroll buffered hybrid nanostructural VO2 (B) cathodes for high-rate and long-life lithium storage. Adv Mater. 2013;25(21):2969.

    Article  CAS  Google Scholar 

  24. Yanase I, Mori Y, Kobayashi H. Hydrothermal synthesis and thermal change in IR reflectance of Al/W co-doped VO2 powder. Mater Res Bull. 2018;100:243.

    Article  CAS  Google Scholar 

  25. Kim BJ, Lee YW, Choi S, Lim JW, Yun SJ, Kim HT, Shin TJ, Yun HS. Micrometer X-ray diffraction study of VO2 films: separation between metal-insulator transition and structural phase transition. Phys Rev B. 2008;77(23):5401.

    Article  Google Scholar 

  26. Zhang CX, Cheng J, Zhang J, Yang X. Simple and facile synthesis W-doped VO2 (M) powder based on hydrothermal pathway. Int J Electrochemi Sci. 2015;10(7):6014.

    CAS  Google Scholar 

  27. Hanlon TJ, Coath JA, Richardson MA. Molybdenum-doped vanadium dioxide coatings on glass produced by the aqueous sol–gel method. Thin Solid Films. 2003;436(2):269.

    Article  CAS  Google Scholar 

  28. Manning TD, Parkin IP, Blackman C, Qureshi U. APCVD of thermochromic vanadium dioxide thin films—solid solutions V2–xMxO2 (M = Mo, Nb) or composites VO2: SnO2. J Mater Chem. 2005;15(42):4560.

    Article  CAS  Google Scholar 

  29. Brown BL, Lee M, Clem PG, Nordquist CD, Jordan TS, Wolfley SL, Leonhardt D, Edney C, Custer JA. Electrical and optical characterization of the metal-insulator transition temperature in Cr-doped VO2 thin films. J Appl Phys. 2013;113(17):173704.

    Article  Google Scholar 

  30. Zhou J, Gao Y, Liu X, Chen Z, Dai L, Cao C, Luo H, Kanahira M, Sun C, Yan L. Mg-doped VO2 nanoparticles: hydrothermal synthesis, enhanced visible transmittance and decreased metal-insulator transition temperature. Phys Chem Chem Phys. 2013;15(20):7505.

    Article  CAS  Google Scholar 

  31. Pan M, Zhong H, Wang S, Liu J, Li Z, Chen X, Liu W. Properties of VO2 thin film prepared with precursor VO(acac)2. J Cryst Growth. 2004;265(1–2):121.

    Article  CAS  Google Scholar 

  32. Krammer A, Magrez A, Vitale WA, Mocny P, Jeanneret P, Guibert E, Whitlow HJ, Ionescu AM, Schüler A. Elevated transition temperature in Ge doped VO2 thin films. J Appl Phys. 2017;122(4):5304.

    Article  Google Scholar 

  33. Kresse G, Furthmuller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B. 1996;54(16):11169.

    Article  CAS  Google Scholar 

  34. Blochl PE. Projector augmented-wave method. Phys Rev B: Condens Matter. 1994;50(24):17953.

    Article  CAS  Google Scholar 

  35. Perdew John P, Burke Kieron, Ernzerhof Matthias. Generalized gradient approximation made simple. Phys Rev Lett. 1996;77(18):3865.

    Article  CAS  Google Scholar 

  36. Wentzcovitch RM, Schulz WW, Allen PB. VO2: Peierls or Mott–Hubbard? A view from band theory. Phys Rev Lett. 1994;72(21):3389.

    Article  CAS  Google Scholar 

  37. Rice TM, Launois H, Pouget JP. Comment on “VO2: Peierls or Mott-Hubbard? A view from band theory”. Phys Rev Lett. 1994;73(22):3042.

    Article  CAS  Google Scholar 

  38. Wang L, Maxisch T, Ceder G. Oxidation energies of transition metal oxides within the GGA+U framework. Phys Rev B. 2006;73(19):5107.

    Article  Google Scholar 

  39. Liebsch A, Ishida H, Bihlmayer G. Coulomb correlations and orbital polarization in the metal-insulator transition of VO2. Phys Rev B. 2005;71(8):5109.

    Article  Google Scholar 

  40. Cui Y, Cao C, Chen Z, Luo H, Gao Y. Atomic and electronic structures of thermochromic VO2 with Sb-doping. Comput Mater Sci. 2017;130:103.

    Article  CAS  Google Scholar 

  41. Rogers KD. An X-ray diffraction study of semiconductor and metallic vanadium dioxide. Powder diffract. 1993;8(04):240.

    Article  CAS  Google Scholar 

  42. Sun C, Yan L, Yue B, Liu H, Gao Y. The modulation of metal-insulator transition temperature of vanadium dioxide: a density functional theory study. J Mater Chem C. 2014;2(43):9283.

    Article  CAS  Google Scholar 

  43. Dai L, Chen S, Liu J, Gao Y, Zhou J, Chen Z, Cao C, Luo H, Kanehira M. F-doped VO2 nanoparticles for thermochromic energy-saving foils with modified color and enhanced solar-heat shielding ability. Phys Chem Chem Phys. 2013;15(28):11723.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Natural Science Foundation of Ningxia (No. 2020AAC03005) and the Western Light Foundation of the Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Ma or Sen Liang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 711 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Hao, YQ., Ma, W. et al. Improving phase transition temperature of VO2 via Ge doping: a combined experimental and theoretical study. Rare Met. 40, 1337–1346 (2021). https://doi.org/10.1007/s12598-020-01655-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-020-01655-3

Keywords

Navigation