Skip to main content
Log in

Quantumness of channels

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The reliability of quantum channels for transmitting information is of profound importance from the perspective of quantum information. This naturally leads to the question as how well a quantum state is preserved when subjected to a quantum channel. We propose a measure of quantumness of channels based on non-commutativity of quantum states that is intuitive and easy to compute. We apply the proposed measure to some well-known noise channels, both Markovian and non-Markovian, and find that the results are in good agreement with those from a recently introduced \(l_1\)-norm coherence based measure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Roman Rietsche, Christian Dremel, … Jan-Marco Leimeister

References

  1. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  2. Holevo, A.S.: Quantum Systems, Channels, Information: A Mathematical Introduction, vol. 16. Walter de Gruyter, Berlin (2012)

    Book  Google Scholar 

  3. Maniscalco, S., Olivares, S., Paris, M.G.A.: Entanglement oscillations in non-Markovian quantum channels. Phys. Rev. A 75, 062119 (2007)

    Article  ADS  Google Scholar 

  4. Modi, K., Brodutch, A., Cable, H., Paterek, T., Vedral, V.: The classical-quantum boundary for correlations: discord and related measures. Rev. Mod. Phys. 84, 1655 (2012)

    Article  ADS  Google Scholar 

  5. Iyengar, P., Chandan, G.N., Srikanth, R.: Quantifying quantumness via commutators: an application to quantum walk (2013). arXiv:1312.1329 [quant-ph]

  6. Banerjee, S.: Open Quantum Systems: Dynamics of Nonclassical Evolution. Springer, Berlin (2018)

    Book  Google Scholar 

  7. Bu, K., Swati, Singh, U., Wu, J.: Coherence-breaking channels and coherence sudden death. Phys. Rev. A 94, 052335 (2016)

  8. Streltsov, A., Kampermann, H., Bruß, D.: Behavior of quantum correlations under local noise. Phys. Rev. Lett. 107, 170502 (2011)

    Article  ADS  Google Scholar 

  9. Srikanth, R., Banerjee, S.: Squeezed generalized amplitude damping channel. Phys. Rev. A 77, 012318 (2008)

    Article  ADS  Google Scholar 

  10. Banerjee, S., Srikanth, R.: Geometric phase of a qubit interacting with a squeezed-thermal bath. Eur. Phys. J. D 46, 335 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  11. Chakrabarty, I., Banerjee, S., Siddharth, N.: A study of quantum correlations in open quantum systems. Quantum Info. Comput. 11, 541 (2011)

    MathSciNet  MATH  Google Scholar 

  12. Kumar, N.P., Banerjee, S., Srikanth, R., Jagadish, V., Petruccione, F.: Open. Syst. Inf. Dyn. 25, 1850014 (2018). arXiv:1711.03267 [quant-ph]

    Article  Google Scholar 

  13. Shrikant, U., Srikanth, R., Banerjee, S.: Non-Markovian dephasing and depolarizing channels. Phys. Rev. A (2018). https://doi.org/10.1103/physreva.98.032328

    Article  Google Scholar 

  14. Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-Markovianity: a hierarchy. Phys. Rep. 759, 1–51 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  15. Badziag, P., Horodecki, M., Horodecki, P., Horodecki, R.: Local environment can enhance fidelity of quantum teleportation Phys. Rev. A 62, 012311 (2000)

    Article  Google Scholar 

  16. Yeo, Y.: Local noise can enhance two-qubit teleportation. Phys. Rev. A 78, 022334 (2008)

    Article  ADS  Google Scholar 

  17. Hu, X., Gu, Y., Gong, Q., Guo, G.: Noise effect on fidelity of two-qubit teleportation. Phys. Rev. A 81, 054302 (2010)

    Article  ADS  Google Scholar 

  18. Hu, X., Gu, Y., Gong, Q., Guo, G.: Necessary and sufficient condition for Markovian-dissipative-dynamics-induced quantum discord. Phys. Rev. A 84, 022113 (2011)

    Article  ADS  Google Scholar 

  19. Ciccarello, F., Giovannetti, V.: Creating quantum correlations through local nonunitary memoryless channels. Phys. Rev. A 85, 010102 (2012)

    Article  ADS  Google Scholar 

  20. Mani, A., Karimipour, V.: Cohering and decohering power of quantum channels. Phys. Rev. A 92, 032331 (2015)

    Article  ADS  Google Scholar 

  21. Bu, K., Kumar, A., Zhang, L., Wu, J.: Cohering power of quantum operations. Phys. Lett. A 381, 1670 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  22. Zanardi, P., Zalka, C., Faoro, L.: Entangling power of quantum evolutions. Phys. Rev. A 62, 030301 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  23. Shen, Y., Chen, L.: Entangling power of two-qubit unitary operations. J. Phys. A: Math. Theor. 51, 395303 (2018)

    Article  MathSciNet  Google Scholar 

  24. Datta, C., Sazim, S., Pati, A.K., Agrawal, P.: Coherence of quantum channels. Ann. Phys. 397, 243 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  25. Korzekwa, K., Czachórski, S., Pucha, L.Z., Życzkowski, K.: Distinguishing classically indistinguishable states and channels. J. Phys. A: Math. Theor. 52, 475303 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  26. Korzekwa, K., Czachórski, S., Pucha, L.Z., Życzkowski, K.: Coherifying quantum channels. New J. Phys. 20, 043028 (2018)

    Article  ADS  Google Scholar 

  27. Shahbeigi, F., Akhtarshenas, S.J.: Quantumness of quantum channels. Phys. Rev. A 98, 042313 (2018)

    Article  ADS  Google Scholar 

  28. Naikoo, J., Banerjee, S.: Coherence based measure of quantumness in (non) Markovian channels. Quantum Inf. Process. 19, 2 (2020)

    Article  MathSciNet  Google Scholar 

  29. Napoli, C., Bromley, T.R., Cianciaruso, M., Piani, M., Johnston, N., Adesso, G.: Robustness of coherence: an operational and observable measure of quantum coherence. Phys. Rev. Lett. 116, 150502 (2016)

    Article  ADS  Google Scholar 

  30. Hu, X., Fan, H., Zhou, D.L., Liu, W.-M.: Necessary and sufficient conditions for local creation of quantum correlation. Phys. Rev. A 85, 032102 (2012)

    Article  ADS  Google Scholar 

  31. Watrous, J.: The Theory of Quantum Information. Cambridge University Press, Cambridge (2018)

    Book  Google Scholar 

  32. Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013)

    Book  Google Scholar 

  33. Daffer, S., Wódkiewicz, K., Cresser, J.D., McIver, J.K.: Depolarizing channel as a completely positive map with memory. Phys. Rev. A 70, 010304 (2004)

    Article  ADS  Google Scholar 

  34. Shrikant, U., Srikanth, R., Banerjee, S.: Non-Markovian dephasing and depolarizing channels. Phys. Rev. A 98, 032328 (2018)

    Article  ADS  Google Scholar 

  35. Banerjee, S., Ghosh, R.: Dynamics of decoherence without dissipation in a squeezed thermal bath. J. Phys. A: Math. Theor. 40, 13735 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  36. Nielsen, M.A., Chuang, I.: Quantum computation and quantum information (2002)

  37. Omkar, S., Srikanth, R., Banerjee, S.: Dissipative and non-dissipative single-qubit channels: dynamics and geometry. Quantum Inf. Process. 12, 3725 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  38. Ferro, L., Fazio, R., Illuminati, F., Marmo, G., Vedral, V., Pascazio, S.: Measuring quantumness: from theory to observability in interferometric setups (2015). arXiv:1501.03099 [quant-ph]

  39. Sjöqvist, E., Pati, A.K., Ekert, A., Anandan, J.S., Ericsson, M., Oi, D.K.L., Vedral, V.: Geometric phases for mixed states in interferometry. Phys. Rev. Lett. 85, 2845 (2000)

    Article  ADS  Google Scholar 

  40. Filip, R.: Overlap and entanglement-witness measurements. Phys. Rev. A 65, 062320 (2002)

    Article  ADS  Google Scholar 

  41. Carteret, H.A.: Noiseless quantum circuits for the peres separability criterion. Phys. Rev. Lett. 94, 040502 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  42. Ekert, A.K., Alves, C.M., Oi, D.K.L., Horodecki, M., Horodecki, P., Kwek, L.C.: Direct estimations of linear and nonlinear functionals of a quantum state. Phys. Rev. Lett. 88, 217901 (2002)

    Article  ADS  Google Scholar 

  43. Bhattacharya, S., Banerjee, S., Pati, A.K.: Evolution of coherence and non-classicality under global environmental interaction. Quantum Inf. Process. 17, 236 (2018)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javid Naikoo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naikoo, J., Banerjee, S. & Srikanth, R. Quantumness of channels. Quantum Inf Process 20, 32 (2021). https://doi.org/10.1007/s11128-020-02958-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02958-1

Keywords

Navigation