Skip to main content

Advertisement

Log in

Lactobacillus rhamnosus CGMCC 1.3724 (LPR) Improves Skin Wound Healing and Reduces Scar Formation in Mice

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

Skin wounds are an important clinical problem which affects millions of people worldwide. The search for new therapeutic approaches to improve wound healing is needed. The present study aimed to evaluate the effects of the oral treatment with the skin-related probiotics Lactobacillus johnsonii LA1 (LJ), L. paracasei ST11 (LP), and L. rhamnosus LPR (LR) in a model of excisional skin wounds in Swiss mice. The animals received daily oral gavage of PBS or 1 × 107 colony-forming units of LJ, LP, or LR, singly, beginning just after the creation of wounds until euthanasia. Blood flow was evaluated by laser Doppler perfusion imaging. Myeloperoxidase and N-acetyl-β-D-glucosaminidase activities were used to assess the accumulation of neutrophils and macrophages, respectively. The wound tissue was also collected for histological analyses (H&E, Toluidine blue, and Picrosirius red staining). The macroscopic wound closure rate was faster only in mice treated with LR, but not with LJ and LP, when compared to mice treated with PBS. Histological evaluations showed that treatment with LR stimulated wound epithelization when compared to PBS. Further analyses showed that wounds from LR-treated mice presented a significant decrease in macrophage (p < 0.001) and mast cell (p < 0.001) infiltration, along with improved angiogenesis (p < 0.001) and blood flow (p < 0.01). Of note, collagen deposition and scarring were reduced in LR-treated mice when compared to PBS-treated mice. In conclusion, our results show that the oral treatment with Lactobacillus rhamnosus accelerates skin wound closure and reduces scar, besides to reducing inflammation and fibrogenesis and improving angiogenesis in the wounded skin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Singh S, Young A, McNaught CE (2017) The physiology of wound healing Surg 35:473–477. https://doi.org/10.1016/j.mpsur.2017.06.004

    Article  Google Scholar 

  2. Serra MB, Barroso WA, Da Silva NN, Silva SDN, Borges ACR, Abreu IC, Borges MODR (2017) From inflammation to current and alternative therapies involved in wound healing. Int J Inflam 2017:17. https://doi.org/10.1155/2017/3406215

    Article  CAS  Google Scholar 

  3. Waidman MAP, Rocha SC, Correa JL, Brischiliari A, Marcon SS (2011) O cotidiano do indivíduo com ferida crônica e sua saúde mental. Texto contexto - enferm 20:691–699. https://doi.org/10.1590/S0104-07072011000400007

    Article  Google Scholar 

  4. Van den Broek LJ, Limandjaja GC, Niessen FB, Gibbs S (2014) Human hypertrophic and keloid scar models: principles, limitations and future challenges from a tissue engineering perspective. Exp Dermatol 23:382–386. https://doi.org/10.1111/exd.12419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Santo ICRV, Souza MAO, Andrade LNV, Lopes MP, Silva MFAB, Santiago RT (2014) Characterization of care for patients with wounds in primary care. Rev Rene 15:613–620. https://doi.org/10.15253/2175-6783.2014000400008

    Article  Google Scholar 

  6. Patel R, Dupont HL (2015) New approaches for bacteriotherapy: prebiotics, new-generation probiotics, and symbiotics. Clin Infect Dis 60:S108–S121. https://doi.org/10.1093/cid/civ177

    Article  PubMed  PubMed Central  Google Scholar 

  7. Canesso MC, Vieira AT, Castro TB et al (2014) Skin wound healing is accelerated and scarless in the absence of commensal microbiota. J Immunol 193:5171–5180. https://doi.org/10.4049/jimmunol.1400625

    Article  CAS  PubMed  Google Scholar 

  8. Wong VW, Martindale RG, Longaker MT et al (2013) From germ theory to germ therapy. Plast Reconstr Surg 132:854e–861e. https://doi.org/10.1002/kjm2.12011

    Article  CAS  PubMed  Google Scholar 

  9. FAO/WHO Working Group (2002) Guidelines for the evaluation of probiotics in food. https://www.who.int/foodsafety/fs_management/en/probiotic_guidelines.pdf. Accessed 14 May 2020

  10. Hill C, Guarner F, Reid G et al (2014) The international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol 11:506–514. https://doi.org/10.1038/nrgastro.2014.66

    Article  PubMed  Google Scholar 

  11. Forsythe P, Bienenstock J (2010) Immunomodulation by commensal and probiotic bacteria. Immunol Invest 39:429–448. https://doi.org/10.3109/08820131003667978

    Article  CAS  PubMed  Google Scholar 

  12. Fuchs-Tarlovsky V, Marquez-Barba MF, Sriram K (2016) Probiotics in dermatologic practice. Nutrition 32:289–295. https://doi.org/10.1016/j.nut.2015.09.001

    Article  PubMed  Google Scholar 

  13. Nole KLB, Yim E, Keri JE (2014) Probiotics and prebiotics in dermatology. J Am Acad Dermatol 71:814–821. https://doi.org/10.1016/j.jaad.2014.04.050

    Article  Google Scholar 

  14. Zahedi M, Nasrabadi FH, Ebrahimi MT, Shabani M, Aboutalebi H (2011) The effect of Lactobacillus brevis isolated from Iranian traditional cheese on cutaneous wound healing in rats. J Cell Anim Biol 5:265–270. https://academicjournals.org/journal/JCAB/article-full-text-pdf/8E8341A13636

  15. Tsiouris CG, Kelesi M, Vasilopoulos G, Kalemikerakis I, Papageorgiou EG (2017) The efficacy of probiotics as pharmacological treatment of cutaneous wounds: meta-analysis of animal studies. Eur J Pharm Sci 104:230–239. https://doi.org/10.1016/j.ejps.2017.04.002

    Article  CAS  PubMed  Google Scholar 

  16. Damaceno QS, Souza JP, Nicoli JR, Paula RL, Assis GB, Figueiredo HC, Azevedo V, Martins FS (2017) Evaluation of potential probiotics isolated from human milk and colostrum. Probiotics Antimicrob Proteins 9(4):371–379. https://doi.org/10.1007/s12602-017-9270-1

    Article  PubMed  Google Scholar 

  17. Souza EL, Elian SD, Paula LM, Garcia CC, Vieira AT, Teixeira MM, Arantes RM, Nicoli JR, Martins FS (2016) Escherichia coli strain nissle 1917 ameliorates experimental colitis by modulating intestinal permeability, the inflammatory response and clinical signs in a faecal transplantation model. J Med Microbiol 5(3):201–210. https://doi.org/10.1099/jmm.0.000222

    Article  CAS  Google Scholar 

  18. Turner PV, Brabb T, Pekow C, Ann M (2011) Administration of substances to laboratory animals: routes of administration and factors to consider. J Am Assoc Lab Anim Sci 50(5):600–613 (PMID: 22330705)

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Moreira CF, Cassini-vieira P, Felipetto M, Barcelos LS (2015) Skin wound healing model - excisional wounding and assessment of lesion area. Bio-Protocol 5:20–23. https://doi.org/10.21769/BioProtoc.1661

    Article  Google Scholar 

  20. Eng J (2003) Sample size estimation: how many individuals should be studied? Radiology 227(2):309–313. https://doi.org/10.1148/radiol.2272012051

    Article  PubMed  Google Scholar 

  21. Ansell DM, Campbell L, Thomason HA, Brass A, Hardman MJ (2014) A statistical analysis of murine incisional and excisional acute wound models. Wound Repair Regen 22(2):281–287. https://doi.org/10.1111/wrr.12148

    Article  PubMed  PubMed Central  Google Scholar 

  22. Cassini-Vieira P, Felipetto M, Prado LB, Verano-Braga T, Andrade SP, Santos RAS, Teixeira MM, Lima ME, Pimenta AMC, Barcelos LS (2016) Ts14 from Tityus serrulatus boosts angiogenesis and attenuates inflammation and collagen deposition in sponge-induced granulation tissue in mice. Peptides 98:63–69. https://doi.org/10.1016/j.peptides.2016.10.002

    Article  CAS  PubMed  Google Scholar 

  23. Ridiandries A, Bursill C, Tan J (2017) Broad-spectrum inhibition of the CC-Chemokine class improves wound healing and wound angiogenesis. Int J Mol Sci 8(1):155. https://doi.org/10.3390/ijms18010155

    Article  CAS  Google Scholar 

  24. Yeh C, Chen C, Leu Y et al (2017) The effects of artocarpin on wound healing: in vitro and in vivo studies. Sci Rep 7:15599. https://doi.org/10.1038/s41598-017-15876-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cassini-vieira P, Moreira CF, Felipetto M, Barcelos LS (2015) Estimation of wound tissue neutrophil and macrophage accumulation by measuring myeloperoxidase (MPO) and N-acetyl-β-D-glucosaminidase (NAG) activities. Bio-Protocol 5:1–7. https://doi.org/10.21769/BioProtoc.1662

    Article  Google Scholar 

  26. Chuong CM, Nickoloff BJ, Elias PM et al (2002) What is ‘true’ function of skin? Exp Dermatol 11:159–187. https://doi.org/10.1034/j.1600-0625.2002.00112.x

    Article  CAS  PubMed  Google Scholar 

  27. Ito M, Liu Y, Yang Z, Nguyen J, Liang F, Morris RJ, Cotsarelis G (2006) Stem cells in the hair follicle bulb contribute to wound repais but not to homeostasis of the epidermis. Nat Med 11:1351–1354. https://doi.org/10.1038/nm1328

    Article  CAS  Google Scholar 

  28. Pastar I, Stojadinovic O, Yin NC et al (2014) Epithelialization in wound healing: a comprehensive review. Adv Wound Care 3:445–464. https://doi.org/10.1089/wound.2013.0473

    Article  Google Scholar 

  29. Chen L, Mirza R, Kwon Y, DiPietro LA, Koh TJ (2015) The murine excisional wound model: contraction revisited. Wound Repair Regen 23(6):874–877. https://doi.org/10.1111/wrr.12338

    Article  PubMed  PubMed Central  Google Scholar 

  30. Mohammedsaeed W, Cruickshank S, McBain AJ, O’Neill CA (2015) Lactobacillus rhamnosus GG lysate increases reepithelization of keratinocyte scratch assays by promoting migration. Sci Rep 5:16147. https://doi.org/10.1038/srep16147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Poutahidis T, Kearney SM, Levkovich T et al (2013) Microbial symbionts accelerate wound healing via the neuropeptide hormone oxytocin. PLoS ONE 8:e78898. https://doi.org/10.1371/journal.pone.0078898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lee HY, Park JH, Seok SH, Baek MW, Kim DJ, Lee KE, Paek KS, Lee Y, Park JH (2006) Human originated bacteria, Lactobacillus rhamnosus PL60, produce conjugated linoleic acid and show anti-obesity effects in diet-induced obese mice. Biochim Biophys Acta 1761(7):736–744. https://doi.org/10.1016/j.bbalip.2006.05.007

    Article  CAS  PubMed  Google Scholar 

  33. Aktas B, De Wolfe TJ, Tandee K, Safdar N, Darien BJ, Steele JL (2015) The effect of Lactobacillus casei 32G on the mouse cecum microbiota and innate immune response is dose and time dependent. PLoS ONE 10(12):e0145784. https://doi.org/10.1371/journal.pone.0145784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Liu Q, Ni X, Wang Q, Peng Z, Niu L, Wang H, Zhou Y, Sun H, Pan K, Jing B, Zeng D (2017) Lactobacillus plantarum BSGP201683 isolated from giant panda feces attenuated inflammation and improved gut microflora in mice challenged with enterotoxigenic Escherichia coli. Front Microbiol 8:1885. https://doi.org/10.3389/fmicb.2017.01885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Al-Ghazzewi FH, Tester RF (2014) Impact of prebiotics and probiotics on skin health. Benef Microbes 5:99–107. https://doi.org/10.3920/BM2013.0040

    Article  CAS  PubMed  Google Scholar 

  36. Koryszewska-Bagińska A, Gawor J, Nowak A et al (2019) Comparative genomics and functional analysis of a highly adhesive dairy Lactobacillus paracasei subsp. paracasei IBB3423 strain. Appl Microbiol Biotechnol 103:7617–7634. https://doi.org/10.1007/s00253-019-10010-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Watson D, O’Connell M, Motherway M, Schoterman MH, van Neerven RJ, Nauta AA, van Sinderen D (2012) Selective carbohydrate utilization by lactobacilli and bifidobacterial. J Appl Microbiol 114:1132–1146. https://doi.org/10.1111/jam.12105

    Article  CAS  Google Scholar 

  38. Bäuerl C, Pérez-Martínez G, Yan F, Polk DB, Monedero V (2010) Functional analysis of the p40 and p75 proteins from Lactobacillus casei BL23. J Mol Microbiol Biotechnol 19:231–241. https://doi.org/10.1159/000322233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Douillard FD, Ribbera A, Järvinen HM et al (2013) Comparative genomic and functional analysis of Lactobacillus casei and Lactobacillus rhamnosus strains marketed as probiotics. Appl and Environ Microbiol 79(6):1923–1933. https://doi.org/10.1128/AEM.03467-12

    Article  CAS  Google Scholar 

  40. Watanabe T, Nishio H, Tanigawa T et al (2009) Probiotic Lactobacillus casei strain Shirota prevents indomethacin-induced small intestinal injury: involvement of lactic acid. Am J Physiol Gastrointest Liver Physiol 297:G506–G513. https://doi.org/10.1152/ajpgi.90553.2008

    Article  CAS  PubMed  Google Scholar 

  41. Chon H, Choi B, Jeong G, Lee E, Lee S (2010) Suppression of proinflammatory cytokine production by specific metabolites of Lactobacillus plantarum 10hk2 via inhibiting NF-kB and p38 MAPK expressions. Comp Immunol Microbiol Infect Dis 33:e41–e49. https://doi.org/10.1016/j.cimid.2009.11.002

    Article  PubMed  Google Scholar 

  42. Liu Z, Velazquez OC (2010) Angiogenesis in wound healing Encycl Eye 52:99–105

    Google Scholar 

  43. Franks I (2012) Gut microbes might promote intestinal angiogenesis. Nat Rev Gastroenterol Hepatol 10:3. https://doi.org/10.1053/j.gastro.2012.11.005

    Article  CAS  PubMed  Google Scholar 

  44. Lam EKY, Yu L, Wong HPS, Wu WKK, Shin VY, Tai EKK, So WHL, Woo PCY, Cho CH (2007) Probiotic Lactobacillus rhamnosus GG enhances gastric ulcer healing in rats. Eur J Pharmacol 565:171–179. https://doi.org/10.1016/j.ejphar.2007.02.050

    Article  CAS  PubMed  Google Scholar 

  45. Ashraf R, Shah NP (2014) Immune system stimulation by probiotic microorganisms. Crit Rev Food Sci Nutr 54:938–956. https://doi.org/10.1080/10408398.2011.619671

    Article  CAS  PubMed  Google Scholar 

  46. Schultz M, Linde HJ, Lehn N, Zimmermann K, Grossmann J, Falk W, Schölmerich J (2003) Immunomodulatory consequences of oral administration of Lactobacillus rhamnosus strain GG in healthy volunteers. J Dairy Res 70:165–173. https://doi.org/10.1017/S0022029903006034

    Article  CAS  PubMed  Google Scholar 

  47. Eming SA, Martin P, Tomic-Canic M (2014) Wound repair and regeneration: mechanisms, signaling, and translation. Sci Transl Med 6:265sr6. https://doi.org/10.1126/scitranslmed.3009337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Cheng W, Yan-hua R, Fang-gang N, Guo-an Z (2011) The content and ratio of type I and III collagen in skin differ with age and injury. African J Biotechnol 10:2524–2529. https://doi.org/10.5897/AJB10.1999

    Article  Google Scholar 

Download references

Funding

This work was supported by grants from Conselho Nacional de Pesquisa/CNPq, Coordenação de Aperfeiçoamento de Pessoal de Nível Superior/CAPES, and Fundação de Amparo à Pesquisa de Minas Gerais/FAPEMIG, Brazil. Barcelos LS, Nicoli JR, Martins FS, and Teixeira MM hold CNPq Research Fellowships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucíola Silva Barcelos.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 98 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moreira, C.F., Cassini-Vieira, P., Canesso, M.C.C. et al. Lactobacillus rhamnosus CGMCC 1.3724 (LPR) Improves Skin Wound Healing and Reduces Scar Formation in Mice. Probiotics & Antimicro. Prot. 13, 709–719 (2021). https://doi.org/10.1007/s12602-020-09713-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-020-09713-z

Keywords

Navigation