Skip to main content
Log in

Direct Detection of Highly Localized Metal-Metal Interface Plasmons from Bimetallic Nanoparticles

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Tailoring of photon-matter interaction in solid material is critical for surface plasmon resonance-based sensing. This can be achieved from suitable material with interface engineering. The modified plasma oscillations in metal-metal interfaces are highly sought-after phenomena in plasmonics; however, such a localized nature of this oscillation has never been reported. Here we present the first evidence of localized interface plasmons from CoAg bimetallic nanoparticles by employing scanning transmission electron microscopy-electron energy-loss spectroscopy. We found that the localized interface plasmons oscillate with a frequency in between in-plane dipole localized surface plasmon resonance (LSPR) mode and quasiplanar mode. Moreover, we observed that the localized interface plasmon resonance is stronger than in-plane dipole LSPR which was characterized by comparing the quality factor of the energy-loss peaks. Such interface plasmon resonance was not distinctly observed from ensembles of CoAg nanoparticles by optical excitation incident normally; however, a broader in-plane dipole mode was observed compared to similar pure Ag nanoparticles. This direct detection of plasmons confined to the interface region could drive to future engineering of bimetallic interfaces with improved plasmonic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The data and materials that support the findings of this study are available from the corresponding author on reasonable request.

References

  1. Luther JM, Jain PK, Ewers T, Alivisatos AP (2011) Nat Mater 10(5):361

    Article  CAS  Google Scholar 

  2. Baudrion AL, Perron A, Veltri A, Bouhelier A, Adam PM, Bachelot R (2013) Nano Lett 13(1):282

    Article  CAS  Google Scholar 

  3. Maier SA (2007) Plasmonics: fundamentals and applications. Springer Science & Business Media

  4. Kale MJ, Christopher P (2015) Science 349(6248):587

    Article  CAS  Google Scholar 

  5. Tan S, Argondizzo A, Ren J, Liu L, Zhao J, Petek H (2017) Nat Photon 11 (12):806

    Article  CAS  Google Scholar 

  6. Jia C, Li X, Xin N, Gong Y, Guan J, Meng L, Meng S, Guo X (2016) Adv Energy Mater 6(17):1600431

    Article  Google Scholar 

  7. Koirala KP, Sandireddy VP, Garcia H, Duscher G, Kalyanaraman R (2020) Nanotechnology

  8. Noginov M, Zhu G, Bahoura M, Adegoke J, Small C, Ritzo B, Drachev V, Shalaev VM (2006) Opt Lett 31(20):3022

    Article  CAS  Google Scholar 

  9. Sun C (2018) Plasmonics 13(5):1671

    Article  CAS  Google Scholar 

  10. Wang J, Wang G, Liu C (2019) Plasmonics 14(4):921

    Article  CAS  Google Scholar 

  11. Tachibana Y, Kusunoki K, Ohsaki H (2004) Vacuum 74(3–4):555

    Article  CAS  Google Scholar 

  12. Wu N (2018) Nanoscale 10(6):2679

    Article  CAS  Google Scholar 

  13. Huang X, Li H, Zhang C, Tan S, Chen Z, Chen L, Lu Z, Wang X, Xiao M (2019) Nat Commun 10(1):1

    Article  Google Scholar 

  14. Clavero C (2014) Nat Photonics 8(2):95

    Article  CAS  Google Scholar 

  15. Sobhani A, Knight MW, Wang Y, Zheng B, King NS, Brown LV, Fang Z, Nordlander P, Halas NJ (2013) Nat Commun 4(1):1

    Article  Google Scholar 

  16. Stern E, Ferrell R (1960) Phys Rev 120(1):130

    Article  Google Scholar 

  17. Zhu J (2009) Nanoscale Res Lett 4(9):977

    Article  CAS  Google Scholar 

  18. Jewsbury P, Summerside P (1980) J Phys F Met Phys 10(4):645

    Article  CAS  Google Scholar 

  19. Zhang C, Chen BQ, Li ZY, Xia Y, Chen YG (2015) J Phys Chem C 119(29):16836

    Article  CAS  Google Scholar 

  20. Sachan R, Malasi A, Ge J, Yadavali S, Krishna H, Gangopadhyay A, Garcia H, Duscher G, Kalyanaraman R (2014) ACS Nano 8(10):9790

    Article  CAS  Google Scholar 

  21. Malasi A, Ge J, Carr C, Garcia H, Duscher G, Kalyanaraman R (2015) Part Part Syst Charact 32(10):970

    Article  CAS  Google Scholar 

  22. Schneider CA, Rasband WS, Eliceiri KW (2012) Nat Methods 9(7):671

    Article  CAS  Google Scholar 

  23. Swinehart DF (1962) J Chem Educ 39(7):333

    Article  CAS  Google Scholar 

  24. Egerton RF (2011) Electron energy-loss spectroscopy in the electron microscope. Springer Science & Business Media

  25. Krishna H, Sachan R, Strader J, Favazza C, Khenner M, Kalyanaraman R (2010) Nanotechnology 21(15):155601

    Article  CAS  Google Scholar 

  26. Liu X, Li D, Sun X, Li Z, Song H, Jiang H, Chen Y (2015) Scientific Rep 5:12555

    Article  CAS  Google Scholar 

  27. Wu Y, Li G, Cherqui C, Bigelow NW, Thakkar N, Masiello DJ, Camden JP, Rack PD (2016) ACS Photon 3(1):130

    Article  CAS  Google Scholar 

  28. Koh AL, Bao K, Khan I, Smith WE, Kothleitner G, Nordlander P, Maier SA, McComb DW (2009) ACS Nano 3(10):3015

    Article  CAS  Google Scholar 

  29. Takashimizu Y, Iiyoshi M (2016) Progress in Earth and Planetary Science 3(1):2

    Article  Google Scholar 

  30. Coenen T, Schoen DT, Brenny BJ, Polman A, Brongersma ML (2016) Phys Rev B 93(19):195429

    Article  Google Scholar 

  31. Kim M, Lin M, Son J, Xu H, Nam JM (2017) Adv Opt Mater 5(15):1700004

    Article  Google Scholar 

Download references

Acknowledgments

Authors would like to acknowledge the US Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division. The authors also want to thank Dr. Abhinav Malasi for experimental assistance.

Funding

The authors acknowledge financial support by the National Science Foundation (NSF) grant ECCS1607874.

Author information

Authors and Affiliations

Authors

Contributions

GD and RK conceived and supervised the project. KPK, JG, and GD performed the experiment and data analysis. KPK, JG, and GD contributed to the data interpretation. KPK wrote the main manuscript. All authors discussed and commented on the manuscript.

Corresponding author

Correspondence to Gerd Duscher.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Krishna Prasad Koirala and Jingxuan Ge are co-first authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koirala, K.P., Ge, J., Kalyanaraman, R. et al. Direct Detection of Highly Localized Metal-Metal Interface Plasmons from Bimetallic Nanoparticles. Plasmonics 16, 957–964 (2021). https://doi.org/10.1007/s11468-020-01345-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-020-01345-x

Keywords

Navigation