Skip to main content
Log in

The structural state of Finnish Cr- and V-bearing clinozoisite: insights from Raman spectroscopy

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

Severe structural damage in Cr- and V-bearing clinozoisite (Czo) from the Outokumpu copper mine, Finland, was discovered by Nagashima et al. (Eur J Miner 23:731–743, 2011). Single-crystal X-ray and electron diffraction patterns indicated moderate-to-very-poor structural coherency, suggesting a high density of faults in the translational symmetry. However, the poor crystallinity cannot be attributed to self-radiation due to negligible concentrations of radioactive elements. Annealing of Cr- and V-bearing Czo up to 750 °C only slightly improved crystallinity. To solve this enigma, polarized Raman spectroscopy was applied to gain further insights into the structural state of the Cr + V-bearing Finnish Czo. According to the parallel-polarized Raman spectra of Cr + V-rich (Czo-ts3), Cr + V-bearing (Czo-ts2), and Cr + V-free (Czo-ts1) Czo, the peaks broaden with the Cr + V content, indicating increasing density of structural defects. Spectra from a euhedral Cr + V-bearing Czo single-crystal evidence intact structural domains by strong polarization and orientation dependence. Thus, the structural state of Finnish Czo should be described in terms of defect-rich segmented domains with common crystallographic orientation. The incorporation of V and Cr into the clinozoisite structure strongly affects the Raman-active O–H bond stretching modes near 3343 cm−1 [(OH)a] and 3435 cm−1 [(OH)b], assigned to O10-H···O4 and O10-H···O2 hydrogen bridges, respectively. The H···O2 hydrogen bonding is strongly promoted when M3 is partially occupied by Cr + V, and as a result, the linkages between the M2O6- and (M1, M3)O6-chains are disturbed, leading to periodicity faults and size reduction of coherent structural domains. In the case of M3Fe3+ substitution for M3Al, the local stress imposed by the larger M3-site cation is relaxed within the distorted M3O6 octahedron. In the case of M3V3+ or M3Cr3+ substitution for M3Al, M3O6 octahedra are less distorted and local stress fields propagate farther than only to the first coordination sphere, thus disturbing the transitional symmetry. New high-resolution transmission electron microscopy (HRTEM) images indeed display nanocrystals of ca. 10 nm with common crystallographic orientation surrounded by amorphous regions. It is suggested that the segmentation of large coherent crystalline areas in Cr + V-rich Czo to nanocrystals may be triggered by a potential miscibility gap in combination with the sluggish diffusion behavior of Cr3+. Moreover, this study implies that nanostructures as commonly observed for metamict materials may also be caused by strain effects and/or exsolution phenomena precluded by tardy diffusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Armbruster T, Bonazzi P, Akasaka M, Bermanec V, Chopin C, Heuss-Assbichler S, Liebscher A, Menchetti S, Pan Y, Pasero M (2006) Recommended nomenclature of epidote-group minerals. Eur J Miner 18:551–567

    Article  Google Scholar 

  • Bačík P, Uher P (2010) Dissakisite-(La), mukhinite, and clinozoisite: (V, Cr, REE)-rich members of the epidote group in amphibole-pyrite-pyrrhotite metabasic rocks from Pezinok, Rybíček mine, western Carpathians, Slovakia. Can Miner 48:523–536

    Article  Google Scholar 

  • Bačík P, Uher P, Kozáková P, Števko M, Ozdín D, Vaculovič T (2018) Vanadian and chromian garnet- and epidote-supergroup minerals in metamorphosed Paleozoic black shales from Čierna Lehota, Strážovské vrchy Mts., Slovakia: crystal chemistry and evolution. Miner Mag 82:889–911

    Article  Google Scholar 

  • Barrio RA, Galeener FL, Martínez E, Elliott RJ (1993) Regular ring dynamics in AX2 tetrahedral glasses. Phys Rev B 48:15672–15689

    Article  Google Scholar 

  • Bonazzi P, Menchetti S (1995) Monoclinic members of the epidote group: effect s of the Al ↔ Fe3+ ↔ Fe2+ substitution and of the entry of REE3+. Miner Petrol 53:133–153

    Article  Google Scholar 

  • Bonazzi P, Holstam D, Bindi L, Nysten P, Capitani G (2009) Multi-analytical approach to solve the puzzle of an allanite-subgroup mineral from Kesebol, Västra Götaland, Sweden. Am Miner 94:121–134

    Article  Google Scholar 

  • Challis A, Grapes R, Palmer K (1995) Chromian muscovite, uvarovite, and zincian chromite: products of regional metasomatism in northwest Nelson, New Zealand. Can Miner 33:1263–1284

    Google Scholar 

  • Chang IF, Mittra SS (1971) Long wavelength optical phonons in mixed crystals. Adv Phys 20:359–404

    Article  Google Scholar 

  • Deer WA, Howie RA, Zussman MA (1997) Rock-forming minerals volume 1B disilicates and ring silicates, 2nd edn. The Geological Society, London, p 629

  • Della Ventura G, Mottana A, Parodi GC, Griffin WL (1996) FTIR spectroscopy in the OH-stretching region of monoclinic epidotes from Praborna (St. Marcel, Aosta valley, Italy). Eur J Miner 8:655–665

    Article  Google Scholar 

  • Dollase WA (1968) Refinement and comparison of the structures of zoisite and clinozoisite. Am Miner 53:1882–1898

    Google Scholar 

  • Dowty E (1987) Vibrational interactions of tetrahedra in silicate glasses and crystals: I. Calculations on ideal silicate-aluminate-germanate structural units. Phys Chem Miner 14:80–93

    Article  Google Scholar 

  • Enami M (2009) Raman spectrometry of epidote-group minerals. Abstract of Annual Meeting of Mineralogical Society of Japan, p. 84 (R3–20) (in Japanese)

  • Eskola P (1933) On the chrome minerals of Outokumpu. Bull Comm géol Fin 103:26–44

    Google Scholar 

  • Franz G, Liebscher A (2004) Physical and chemical properties of epidote minerals. -An Introduction- In Epidotes (Liebscher A, Franz G eds). Reviews in Mineralogy and Geochemistry, 56: Mineralogical Society of America, Washington, pp 1–82

  • Gatta GD, Meven M, Bromiley G (2010) Effects of temperature on the crystal structure of epidote: a neutron single-crystal diffraction study at 293 and 1,070 K. Phys Chem Miner 37:475–485

    Article  Google Scholar 

  • Gatta GD, Alvaro M, Bromiley G (2012) A low temperature X-ray single-crystal diffraction and polarized infra-red study of epidote. Phys Chem Miner 39:1–15

    Article  Google Scholar 

  • Giuli G, Bonazzi P, Menchetti S (1999) Al-Fe disorder in synthetic epidotes: a single-crystal X-ray diffraction study. Am Miner 84:933–936

    Article  Google Scholar 

  • Grapes RH (1981) Chromian epidote and zoisite in kyanite amphibolite, Southern Alps, New Zealand. Am Miner 66:974–975

    Google Scholar 

  • Heuss-Aßbichler S, Fehr KT (1997) Intercrystalline exchange of Al and Fe3+ between grossular-andradite and clinozoisite-epidote solid solution. N Jb Miner Abh 172:69–100

    Article  Google Scholar 

  • Huang E (1999) Raman spectroscopic study of 15 gem materials. J Geol Soc China 42:301–318

    Google Scholar 

  • Ito T, Morimoto N, Sadanaga R (1954) On the structure of epidote. Acta Crystallogr 7:53–59

    Article  Google Scholar 

  • Janeczek J, Eby RK (1993) Annealing of radiation damage in allanite and gadolinite. Phys Chem Minerals 19:343–356

    Article  Google Scholar 

  • Kroumova E, Aroyo MI, Perez Mato JM, Kirov A, Capillas C, Ivantchev S, Whittaker EJW (2003) Bilbao Crystallographic Server: useful databases and tools for phase transitions studies. Phase Trans 76:155–170

    Article  Google Scholar 

  • Kuzmany H (2009) Solid-state spectroscopy-an introduction. Springer, Berlin, p 554

    Book  Google Scholar 

  • Langer K, Raith M (1974) Infrared spectra of Al-Fe (III)-epidotes and zoisites, Ca2(Al1-pFe3+p)Al2O(OH)[Si2O7][SiO4]. Am Miner 59:1249–1258

    Google Scholar 

  • Leissner L, Schlüter J, Horn I, Mihailova B (2015) Exploring the potential Raman spectroscopy for crystallochemical analyses of complex hydrous silicates: I. Amphiboles. Am Miner 100:2682–2694

    Article  Google Scholar 

  • Lensing-Burgdorf M, Watenphul A, Schlüter J, Mihailova B (2017) Crystal chemistry of tourmalines from the Erongo Mountains, Namibia, studied by Raman spectroscopy. Eur J Miner 29:257–267

    Article  Google Scholar 

  • Libowitzky E (1999) Correlation of O-H stretching frequencies and O-H···O hydrogen bond lengths in minerals. Mh Chemie 130:1047–1059

    Google Scholar 

  • Liebscher A (2004) Spectroscopy of epidote minerals. In: Liebscher A, Franz G (eds) Epidotes. Reviews in mineralogy and geochemistry, 56. Mineralogical Society of America, Washington, pp 125–170

    Google Scholar 

  • Maier B, Mihailova B, Paulmann C, Ihringer J, Gospodinov M, Stosch R, Güttler B, Bismayer U (2009) Effect of local elastic strain on the structure of Pb-based relaxors: a comparative study of pure and Ba- and Bi-doped PbSc0.5Nb0.5O3. Phys Rev B 79:224108

    Article  Google Scholar 

  • Mihailova B, Konstantinov L, Dinolova E (1995) Cluster-approximation modelling of infrared and Raman spectra of crystalline and vitreous CaSiO3. J non-Cryst Solids 191:79–84

    Article  Google Scholar 

  • Mihailova B, Mintova S, Karaghiosoff K, Metzger T, Bein T (2005) Nondestructive identification of colloidal molecular sieves stabilized in water. J Phys Chem B 109:17060–17065

    Article  Google Scholar 

  • Momma K, Izumi F (2011) VESTA3 for three-dimensional visualization of crystal, volumetric and morphology data. J Appl Crystallogr 44:1257–1276

    Article  Google Scholar 

  • Nagashima M, Akasaka M, Sakurai T (2006) Chromian epidote in omphacite rocks from the Sambagawa metamorphic belt, central Shikoku, Japan. J Miner Petrol Sci 101:157–169

    Article  Google Scholar 

  • Nagashima M, Geiger CA, Akasaka M (2009) A crystal-chemical investigation of clinozoisite synthesized along the join Ca2Al3Si3O12(OH)-Ca2Al2CrSi3O12(OH). Am Miner 94:1351–1360

    Article  Google Scholar 

  • Nagashima M, Armbruster T, Herwegh M, Pettke T, Lahti S, Grobéty B (2011) Severe structural damage in Cr- and V-rich clinozoisite: relics of an epidote-group mineral with Ca2Al2Cr3+Si3O12(OH) composition? Eur J Miner 23:731–743

    Article  Google Scholar 

  • Nagashima M, Nishio-Hamane D, Nakano N, Kawasaki T (2019) Synthesis and crystal-chemistry of mukhinite, V-analogue of clinozoisite on the join Ca2Al3Si3O12(OH)-Ca2Al2VSi3O12(OH). Phys Chem Miner 46:63–76

    Article  Google Scholar 

  • Pan Y, Fleet ME (1991) Vanadian allanite-(La) and vanadian allanite-(Ce) from the Hemlo gold deposit, Ontario, Canada. Miner Mag 55:497–507

    Article  Google Scholar 

  • Pan Y, Fleet ME (1992) Mineral chemistry and geochemistry of vanadian silicates in the Hemlo gold deposit, Ontario, Canada. Contrib Miner Petrol 109:511–525

    Article  Google Scholar 

  • Pauling L (1932) The nature of the chemical bond. IV. The energy of single bonds and the relative electronegativity of atoms. J Am Chem Soc 54:3570–3582

    Article  Google Scholar 

  • Pina Binvignat F, Malcherek T, Paulmann C, Schlüter J, Angel RJ, Mihailova B (2018) Radiation-damaged zircon under high pressures. Phys Chem Miner 45:981–993

    Article  Google Scholar 

  • Porto SPS, Scott JF (1967) Raman spectra of CaWO4, SrWO4, CaMoO4 and SrMoO4. Phys Rev 157:716–717

    Article  Google Scholar 

  • Rogacheva EA (2000) Relaxor ferroelectrics: nanoregions-based crystalline media. Phys B 291:359–367

    Article  Google Scholar 

  • Sánchez-Vizcaíno VL, Franz G, Gómez-Pugnaire MT (1995) The behavior of Cr during metamorphism of carbonate rocks from the Nevado-Gilabride complex, Betic Cordilleras, Spain. Can Miner 33:85–104

    Google Scholar 

  • Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A 32:751–767

    Article  Google Scholar 

  • Treloar P (1987a) Chromian muscovites and epidotes from Outokumpu, Finland. Miner Mag 51:593–599

    Article  Google Scholar 

  • Treloar P (1987b) The Cr-minerals of Outokumpu—their chemistry and significance. J Petrol 28:867–886

    Article  Google Scholar 

  • Treloar PJ, Koistinen TJ, Bowes DR (1981) Metamorphic development of cordierite-orthoamphibole rocks and mica schists in the vicinity of the Outokumpu ore-deposit. Trans R Soc Edinburgh Earth Sci 72:201–215

    Article  Google Scholar 

  • Uher P, Kováčik M, Kubiš M, Shtukenberg A, Ozdín D (2008) Metamorphic vanadian-chromian silicate mineralization in carbon-rich amphibole schists from the Malé Karpaty Mountains, Western Carpathians, Slovakia. Am Miner 93:63–73

    Article  Google Scholar 

  • Utsunomiya S, Valley J, Cavosie A, Wilde S, Ewing R (2006) Radiation damage and alteration of zircon from a 3.3 Ga porphyritic granite from the Jack Hills. Western Australia Chem Geol 236:92–111

    Google Scholar 

  • von Knorring O, Condiffe E, Tong YL (1986) Some mineralogical and geochemical aspects of chromian-bearing skarn minerals from northern Karelia. Bull Geol Surv Finland 58:277–292

    Article  Google Scholar 

  • Watenphul A, Burgdorf M, Schlüter J, Horn I, Malcherek T, Mihailova B (2016) Exploring the potential of Raman spectroscopy for crystallochemical analyses of complex hydrous silicates: II. Tourmalines. Am Miner 101:970–985

    Article  Google Scholar 

Download references

Acknowledgements

Two reference materials for our study were kindly given by Prof. J. Schlüter from the Mineralogical Museum, University of Hamburg; clinozoisite from Cerro San Cristobal, Peru (no. VFMM-2107/17) and epidote from Genesee Valley, Plumas County, California, USA (no. 6326). M.N. thanks Dr. N. Waeselmann (Universität Hamburg) for technical assistance with Raman spectroscopic measurements, and Mr. Y. Morifuku for technical assistance with EMPA. The TEM session was performed at the facilities of the Institute for Solid State Physics, University of Tokyo (project nos. AP8, BG53, and BG56). We also thank the Editor Prof. M. Rieder and the reviewers Prof. P. Bačík and an anonymous reviewer for their constructive comments. B.M. acknowledges financial support by the Deutsche Forschungsgemeinschaft (MI 1127/7-2). This study is supported by Alexander von Humboldt Foundation (JPN1121665HFST) and a Grant-in-Aid for Scientific Research (C) from the Japan Society for the Promotion of Science (no. 18K03782).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariko Nagashima.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 15 KB)

Supplementary file2 (XLSX 15 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagashima, M., Armbruster, T., Nishio-Hamane, D. et al. The structural state of Finnish Cr- and V-bearing clinozoisite: insights from Raman spectroscopy. Phys Chem Minerals 48, 5 (2021). https://doi.org/10.1007/s00269-020-01129-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00269-020-01129-z

Keywords

Navigation