Skip to main content
Log in

Traveling wave solutions for the \((2+1)\)-dimensional generalized Zakharov–Kuznetsov equation with variable coefficients

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this article, the unified method, the improved F-expansion method and the modified Kudryashov method are used to obtain the traveling wave solutions of the generalized Zakharov–Kuznetsov equation with variable coefficients. Different types of traveling wave solutions are derived including polynomial solutions and rational solutions by applying the unified method. The polynomial solutions include solitary wave solutions, soliton wave solutions and elliptic wave solutions, and the rational solutions contain periodic type rational solutions and soliton type rational solutions. By means of the improved F-expansion method with Riccati equation, the hyperbolic trigonometric solutions, trigonometric solutions and rational solutions are obtained containing several free parameters. The modified Kudryashov method is also applied to obtain new traveling wave solutions. In addition, the properties of several solutions are represented graphically with the appropriate parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abdel-Gawad, H.I.: Towards a unified method for exact solutions of evolution equations. an application to reaction diffusion equations with finite memory transport. J. Stat. Phys 147(3), 506–518 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  • Abdel-Gawad, H.I., Tantawy, M.: Exact solutions of space dependent Korteweg-de vries equation by the extended unified method. J. Phys. Soc. Jpn. 82(4), 044004 (2013)

    Article  ADS  Google Scholar 

  • Abdou, M.A., ElGawad, S.S.A.: New periodic wave solutions for nonlinear evolution equations with variable coefficients via mapping method. Numer. Methods Partial Differ. Equ 26(6), 1608–1623 (2010)

    MathSciNet  MATH  Google Scholar 

  • Ablowitz, M.J., Clarkson, P.A.: Solitons, nonlinear evolution equations and inverse scattering. Cambridge University Press, Cambridge (1991)

    Book  Google Scholar 

  • Ayhan, B., Bekir, A.: The \(\frac{G^\prime }{G}\)-expansion method for the nonlinear lattice equations. Commun. Nonlinear Sci. Numer. Simul. 17(9), 3490–3498 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  • Azam, M., Shakoor, A., Rasool, H.F., et al.: Numerical simulation for solar energy aspects on unsteady convective flow of MHD Cross nanofluid: A revised approach. Int. J. Heat Mass Transf. 131, 495–505 (2019)

    Article  Google Scholar 

  • Azam, M., Xu, T., Khan, M.: Numerical simulation for variable thermal properties and heat source/sink in flow of Cross nanofluid over a moving cylinder. Int. Commun. Heat Mass Transfer 118, 104832 (2020)

    Article  Google Scholar 

  • Azam, M., Xu, T., Shakoor, A., et al.: Effects of Arrhenius activation energy in development of covalent bonding in axisymmetric flow of radiative-Cross nanofluid. Int. Commun. Heat Mass Transfer 113, 104547 (2020)

    Article  Google Scholar 

  • Bagrov, V.G., Samsonov, B.F.: Darboux transformation of the Schrodinger equation. Phys. Part. Nucl. 28(28), 374–397 (1997)

    Article  MathSciNet  Google Scholar 

  • Chen, J., Ma, Z., Hu, Y.: Nonlocal symmetry, Darboux transformation and soliton-cnoidal wave interaction solution for the shallow water wave equation. J. Math. Anal. Appl. 460(2), 987–1003 (2018)

    Article  MathSciNet  Google Scholar 

  • El-Wakil, S.A., Madkour, M.A., Abdou, M.A.: Application of Exp-function method for nonlinear evolution equations with variable coefficients. Phys. Lett. A 369(1–2), 62–69 (2007)

    Article  ADS  Google Scholar 

  • Enns, R.H., Mcguire, G.C.: Inverse Scattering Method. Springer, Berlin (2000)

    Book  Google Scholar 

  • Hossein, K., Mayeli, P., Ansari, R.: Modified Kudryashov method for solving the conformable time-fractional Klein-Gordon equations with quadratic and cubic nonlinearities. Optik Int. J. Light Electron Opt. 130, 737–742 (2016)

    Article  Google Scholar 

  • Islam, M.S., Khan, K., Akbar, M.A., et al.: A note on improved F-expansion method combined with Riccati equation applied to nonlinear evolution equations. R. Soc. Open Sci 1(2), 140038 (2014)

    Article  ADS  Google Scholar 

  • Islam, M.S., Khan, K., Akbar, M.A.: Application of the improved F-expansion method with Riccati equation to find the exact solution of the nonlinear evolution equations. J. Egypt. Math. Soc. 25, 13–18 (2017a)

    Article  MathSciNet  Google Scholar 

  • Islam, M.S., Khan, K., Akbar, M.A.: Exact travelling wave solutions of the (3+1)-dimensional potential Yu-Toda-Sasa-Fukuyama equation through the improved F-expansion method with Riccati equation. Int. J. Comput. Sci. Math. 8(1), 61–72 (2017b)

    Article  MathSciNet  Google Scholar 

  • Kumar, D., Seadawy, A.R., Joardar, A.K.: Modified Kudryashov method via new exact solutions for some conformable fractional differential equations arising in mathematical biology. Chinese J Phys. 56(1), 75–85 (2018a)

  • Kumar, D., Darvishi, M.T., Joardar, A.K.: Modified Kudryashov method and its application to the fractional version of the variety of Boussinesq-like equations in shallow water. Optical Quantum Electr. 50(3), 128 (2018b)

    Article  Google Scholar 

  • Matveev, V.B.: Darboux transformation and explicit solutions of the Kadomtcev-Petviaschvily equation, depending on functional parameters. Lett. Math. Phys. 3(3), 213–216 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  • Mukheta, B.: A study of the soliton solutions of the Boussinesq and other nonlinear evolution equations of fluid mechanics. Newcastle University (1988)

  • Osman, M.S.: On complex wave solutions governed by the 2D Ginzburg-Landau equation with variable coefficients. Optik Int. J. Light Electron Opt. 156, 169–174 (2018)

    Article  Google Scholar 

  • Osman, M.S., Rezazadeh, H., Eslami, M., et al.: Analytical study of solitons to Benjamin-Bona-Mahony-Peregrine equation with power law nonlinearity by using three methods. UPB Sci. Bull. Ser. A Appl. Math. Phys. 80(4), 267–287 (2018a)

    MathSciNet  MATH  Google Scholar 

  • Osman, M.S., Machado, J.A.T., Baleanu, D.: On nonautonomous complex wave solutions described by the coupled Schrodinger-Boussinesq equation with variable-coefficients. Opt. Quantum Electr. 50(2), 73 (2018b)

    Article  Google Scholar 

  • Osman, M.S., Lu, D., Khater, M.M.A.: A study of optical wave propagation in the nonautonomous Schrödinger-Hirota equation with power-law nonlinearity. Results Phys. 13, 102157 (2019)

    Article  Google Scholar 

  • Wadati, M., Konno, K., Ichikawa, Y.H.: A generalization of inverse scattering method. J. Phys. Soc. Jpn. 46(6), 1965–1966 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  • Wang, M.L., Li, X.Z., Zhang, J.L.: The \(\frac{G^\prime }{G}\)-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics. Phys. Lett. A 372(4), 417–423 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  • Wazwaz, A.M.: Exact solutions with solitons and periodic structures for the Zakharov-Kuznetsov (ZK) equation and its modified form. Commun. Nonlinear Sci. Numer. Simul 10(6), 597–606 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  • Wazwaz, A.M.: Multiple-soliton solutions for the KP equation by Hirota’s bilinear method and by the tanh-coth method. Appl. Math. Comput 190, 633–640 (2007)

    MathSciNet  MATH  Google Scholar 

  • Wazwaz, A.M.: The Hirota’s bilinear method and the tanh-coth method for multiple-soliton solutions of the Sawada-Kotera-Kadomtsev-Petviashvili equation. Appl. Math. Comput. 200(1), 160–166 (2008)

    MathSciNet  MATH  Google Scholar 

  • Xie, Y.M.: Soliton interaction in optical fiber soliton communication systems. Jiangxi Sci. 10(2), 65–70 (1992)

    Google Scholar 

  • Yan, Z.L., Liu, X.Q.: Symmetry and similarity solutions of variable coefficients generalized Zakharov-Kuznetsov equation. Appl. Math. Comput. 180(1), 288–294 (2006)

    MathSciNet  MATH  Google Scholar 

  • Yomba, E.: Construction of new soliton-like solutions for the (2+1) dimensional Kadomtsev-Petviashvili equation. Chaos Solitons Fractals 21, 75–79 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  • Zayed, E.M.E., Abdelaziz, A.M.A.M.: Exact solutions for the generalized Zakharov-Kuznetsov equation with variable coefficients using the generalized \(\frac{G^\prime }{G}\)-expansion method. In: International Conference of Numerical Analysis & Applied Mathematics, American Institute of Physics (2010)

  • Zayed, E.M.E., Gepreel, K.A.: The \(\frac{G^\prime }{G}\)-expansion method for finding traveling wave solutions of nonlinear partial differential equations in mathematical physics. J. Math. Phys. 50(1), 013502 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  • Zhang, L.H.: Travelling wave solutions for the generalized Zakharov-Kuznetsov equation with higher-order nonlinear terms. Appl. Math. Comput. 208(1), 144–155 (2009)

    Article  MathSciNet  Google Scholar 

  • Zhang, Z.Y.: An upper order bound of the invariant manifold in Lax pairs of a nonlinear evolution partial differential equation. J. Phys. Math. Theor. 52(26), 265202 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  • Zhang, Z.Y., Li, G.F.: Lie symmetry analysis and exact solutions of the time-fractional biological population model. Physica A Stat. Mech. Appl 540(15), 123134 (2020)

    Article  MathSciNet  Google Scholar 

  • Zhang, S., Liu, D.: Multisoliton solutions of a (2+1)-dimensional variable-coefficient Toda lattice equation via Hirota’s bilinear method. Can. J. Phys. 92(3), 184–190 (2014)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research is sponsored by the Natural Science Foundation of Shanxi (No. 201801D121018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ben Gao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, B., Wang, Y. Traveling wave solutions for the \((2+1)\)-dimensional generalized Zakharov–Kuznetsov equation with variable coefficients. Opt Quant Electron 53, 58 (2021). https://doi.org/10.1007/s11082-020-02686-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-020-02686-x

Keywords

Navigation