Skip to main content

Advertisement

Log in

Preclinical studies of mesenchymal stem cells transplantation in amyotrophic lateral sclerosis: a systemic review and metaanalysis

  • Original Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Objectives

To assess the quality of preclinical evidence for mesenchymal stromal cell (MSCs) therapy of amyotrophic lateral sclerosis (ALS), decide the effect size of MSCs treatment, and identify clinical parameters that associate with differences in MSCs effects.

Methods

A literature search identified studies of MSCs in animal models of ALS. Four main indicators (age of onset, disease progression deceleration, survival time, hazard ratio reduction) obtained through specific neurobehavioral assessment, and 14 relative clinical parameters were extracted for metaanalysis and systematic review. Subgroup analysis and metaregression were performed to explore sources of heterogeneity.

Results

A total of 25 studies and 41 independent treated arms were used for systematic review and metaanalysis. After adjusted by sensitivity analysis, the mean effect sizes were significantly improved by 0.28 for the age of onset, 0.25 for the disease progression deceleration, 0.54 for the survival time, and 0.48 for hazard ratio reduction. With further analysis, we demonstrated that both the clinical parameter of animal gender and immunosuppressive drug of cyclosporin A (CSA) had a close correlation with disease progression deceleration effect size.

Conclusions

These results showed that MSCs transplantation was beneficial for neurobehavioral improvement in the treatment of ALS animal model and recommended that all potential reparative roles of MSCs postdelivery, should be carefully considered and fused to maximize the effectiveness of MSCs therapy in ALS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Brown RJ, Al-Chalabi A (2017) Amyotrophic lateral sclerosis. N Engl J Med 377:1602

    Article  Google Scholar 

  2. Sartucci F, Pelagatti A, Santin M, Bocci T, Dolciotti C, Bongioanni P (2019) Diaphragm ultrasonography in amyotrophic lateral sclerosis: a diagnostic tool to assess ventilatory dysfunction and disease severity. Neurol Sci 40:2065–2071

    Article  Google Scholar 

  3. Hardiman O, Al-Chalabi A, Chio A, Corr EM, Logroscino G, Robberecht W, Shaw PJ, Simmons Z, van den Berg LH (2017) Amyotrophic lateral sclerosis. Nat Rev Dis Primers 3:17071

    Article  Google Scholar 

  4. Al-Chalabi A, Andersen PM, Chandran S, Chio A, Corcia P, Couratier P, Danielsson O, de Carvalho M, Desnuelle C, Grehl T, Grosskreutz J, Holmoy T, Ingre C, Karlsborg M, Kleveland G, Koch JC, Koritnik B, KuzmaKozakiewicz M, Laaksovirta H, Ludolph A, McDermott C, Meyer T, Mitre RB, Mora PJ, Nygren I, Petri S, Povedano PM, Salachas F, Shaw P, Silani V, Staaf G, Svenstrup K, Talbot K, Tysnes OB, Van Damme P, van der Kooi A, Weber M, Weydt P, Wolf J, Hardiman O, van den Berg LH (2017) July 2017 ENCALS statement on edaravone. Amyotroph Lateral Scler Frontotemporal Degener 18:471–474

    Article  Google Scholar 

  5. Miller RG, Mitchell JD, Moore DH (2012) Riluzole for amyotrophic lateral sclerosis (ALS)/motor neuron disease (MND). Cochrane Database Syst Rev D1447

  6. Bucchia M, Ramirez A, Parente V, Simone C, Nizzardo M, Magri F, Dametti S, Corti S (2015) Therapeutic development in amyotrophic lateral sclerosis. Clin Ther 37:668–680

    Article  Google Scholar 

  7. Takei K, Watanabe K, Yuki S, Akimoto M, Sakata T, Palumbo J (2017) Edaravone and its clinical development for amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener 18:5–10

    Article  CAS  Google Scholar 

  8. Sawada H (2017) Clinical efficacy of edaravone for the treatment of amyotrophic lateral sclerosis. Expert Opin Pharmacother 18:735–738

    Article  CAS  Google Scholar 

  9. Shiota M, Heike T, Haruyama M, Baba S, Tsuchiya A, Fujino H, Kobayashi H, Kato T, Umeda K, Yoshimoto M, Nakahata T (2007) Isolation and characterization of bone marrow-derived mesenchymal progenitor cells with myogenic and neuronal properties. Exp Cell Res 313:1008–1023

    Article  CAS  Google Scholar 

  10. Dodson MV, Wei S, Duarte M, Du M, Jiang Z, Hausman GJ, Bergen WG (2013) Cell supermarket: adipose tissue as a source of stem cells. J Genom 1:39–44

    Article  CAS  Google Scholar 

  11. Zhang X, Hirai M, Cantero S, Ciubotariu R, Dobrila L, Hirsh A, Igura K, Satoh H, Yokomi I, Nishimura T, Yamaguchi S, Yoshimura K, Rubinstein P, Takahashi TA (2011) Isolation and characterization of mesenchymal stem cells from human umbilical cord blood: reevaluation of critical factors for successful isolation and high ability to proliferate and differentiate to chondrocytes as compared to mesenchymal stem cells from bone marrow and adipose tissue. J Cell Biochem 112:1206–1218

    Article  CAS  Google Scholar 

  12. Da CEAL, Ribeiro-Paes JT, Longo BM, Ferrazoli EG, de Andrade TG (2013) Effect of the bone marrow cell transplantation on elevated plus-maze performance in hippocampal-injured mice. Behav Brain Res 248:32–40

    Article  Google Scholar 

  13. Li M, Ikehara S (2013)Bone-marrow-derived mesenchymal stem cells for organ repair. Stem Cells Int 2013:132642

    Article  Google Scholar 

  14. Zhou Y, Yamamoto Y, Xiao Z, Ochiya T (2019) The Immunomodulatory functions of mesenchymal stromal/stem cells mediated via paracrine activity. J Clin Med 8

  15. Schinkothe T, Bloch W, Schmidt A (2008) In vitro secreting profile of human mesenchymal stem cells. Stem Cells Dev 17:199–206

    Article  CAS  Google Scholar 

  16. Zhao LR, Duan WM, Reyes M, Keene CD, Verfaillie CM, Low WC (2002) Human bone marrow stem cells exhibit neural phenotypes and ameliorate neurological deficits after grafting into the ischemic brain of rats. Exp Neurol 174:11–20

    Article  Google Scholar 

  17. Knippenberg S, Thau N, Schwabe K, Dengler R, Schambach A, Hass R, Petri S (2012) Intraspinal injection of human umbilical cord blood-derived cells is neuroprotective in a transgenic mouse model of amyotrophic lateral sclerosis. Neurodegener Dis 9:107–120

    Article  CAS  Google Scholar 

  18. Gubert F, Decotelli AB, Bonacossa-Pereira I, Figueiredo FR, Zaverucha-do-Valle C, Tovar-Moll F, Hoffmann L, Urmenyi TP, Santiago MF, Mendez-Otero R (2016) Intraspinal bone-marrow cell therapy at pre- and symptomatic phases in a mouse model of amyotrophic lateral sclerosis. Stem Cell Res Ther 7:41

    Article  Google Scholar 

  19. Tang BL (2017) The use of mesenchymal stem cells (MSCs) for amyotrophic lateral sclerosis (ALS) therapy - a perspective on cell biological mechanisms. Rev Neurosci 28:725–738

    Article  Google Scholar 

  20. Kim SH, Oh KW, Jin HK, Bae JS (2018) Immune inflammatory modulation as a potential therapeutic strategy of stem cell therapy for ALS and neurodegenerative diseases. BMB Rep 51:545–546

    Article  CAS  Google Scholar 

  21. Lewis CM, Suzuki M (2014) Therapeutic applications of mesenchymal stem cells for amyotrophic lateral sclerosis. Stem Cell Res Ther 5:32

    Article  Google Scholar 

  22. Vercelli A, Mereuta OM, Garbossa D, Muraca G, Mareschi K, Rustichelli D, Ferrero I, Mazzini L, Madon E, Fagioli F (2008) Human mesenchymal stem cell transplantation extends survival, improves motor performance and decreases neuroinflammation in mouse model of amyotrophic lateral sclerosis. Neurobiol Dis 31:395–405

    Article  CAS  Google Scholar 

  23. Macleod MR, O'Collins T, Howells DW, Donnan GA (2004) Pooling of animal experimental data reveals influence of study design and publication bias. STROKE 35:1203–1208

    Article  Google Scholar 

  24. Gardner MJ, Altman DG (1986) Confidence intervals rather than P values: estimation rather than hypothesis testing. Br Med J (Clin Res Ed) 292:746–750

    Article  CAS  Google Scholar 

  25. Boucherie C, Schafer S, Lavand'Homme P, Maloteaux JM, Hermans E (2009) Chimerization of astroglial population in the lumbar spinal cord after mesenchymal stem cell transplantation prolongs survival in a rat model of amyotrophic lateral sclerosis. J Neurosci Res 87:2034–2046

    Article  CAS  Google Scholar 

  26. Forostyak S, Homola A, Turnovcova K, Svitil P, Jendelova P, Sykova E (2014) Intrathecal delivery of mesenchymal stromal cells protects the structure of altered perineuronal nets in SOD1 rats and amends the course of ALS. Stem Cells 32:3163–3172

    Article  CAS  Google Scholar 

  27. Rehorova M, Vargova I, Forostyak S, Vackova I, Turnovcova K, Kupcova SH, Vodicka P, Kubinova S, Sykova E, Jendelova P (2019) A combination of intrathecal and intramuscular application of human mesenchymal stem cells partly reduces the activation of necroptosis in the spinal cord of SOD1(G93A) rats. Stem Cells Transl Med 8:535–547

    Article  CAS  Google Scholar 

  28. Zhou C, Zhang C, Zhao R, Chi S, Ge P, Zhang C (2013) Human marrow stromal cells reduce microglial activation to protect motor neurons in a transgenic mouse model of amyotrophic lateral sclerosis. J Neuroinflammation 10:52

    Article  CAS  Google Scholar 

  29. Chen X, Wang S, Cao W (2018) Mesenchymal stem cell-mediated immunomodulation in cell therapy of neurodegenerative diseases. Cell Immunol 326:8–14

    Article  CAS  Google Scholar 

  30. Volkman R, Offen D (2017) Concise review: mesenchymal stem cells in neurodegenerative diseases. Stem Cells 35:1867–1880

    Article  Google Scholar 

  31. Fu X, Liu G, Halim A, Ju Y, Luo Q, Song AG (2019) Mesenchymal stem cell migration and tissue repair. CELLS-BASEL 8

  32. Naderi-Meshkin H, Bahrami AR, Bidkhori HR, Mirahmadi M, Ahmadiankia N (2015) Strategies to improve homing of mesenchymal stem cells for greater efficacy in stem cell therapy. Cell Biol Int 39:23–34

    Article  CAS  Google Scholar 

  33. Sohni A, Verfaillie CM (2013) Mesenchymal stem cells migration homing and tracking. Stem Cells Int 2013:130763

    Article  Google Scholar 

  34. Tanna T, Sachan V (2014) Mesenchymal stem cells: potential in treatment of neurodegenerative diseases. Curr Stem Cell Res Ther 9:513–521

    Article  CAS  Google Scholar 

  35. Lo FD, Mannino G, Giuffrida R (2018) Functional role of mesenchymal stem cells in the treatment of chronic neurodegenerative diseases. J Cell Physiol 233:3982–3999

    Article  Google Scholar 

  36. Marconi S, Bonaconsa M, Scambi I, Squintani GM, Rui W, Turano E, Ungaro D, D'Agostino S, Barbieri F, Angiari S, Farinazzo A, Constantin G, Del CU, Bonetti B, Mariotti R (2013) Systemic treatment with adipose-derived mesenchymal stem cells ameliorates clinical and pathological features in the amyotrophic lateral sclerosis murine model. NEUROSCIENCE 248:333–343

    Article  CAS  Google Scholar 

  37. Kwon MS, Noh MY, Oh KW, Cho KA, Kang BY, Kim KS, Kim YS, Kim SH (2014) The immunomodulatory effects of human mesenchymal stem cells on peripheral blood mononuclear cells in ALS patients. J Neurochem 131:206–218

    Article  CAS  Google Scholar 

  38. McCombe PA, Henderson RD (2010) Effects of gender in amyotrophic lateral sclerosis. Gend Med 7:557–570

    Article  Google Scholar 

  39. Tajiri N, Borlongan CV, Kaneko Y (2016) Cyclosporine a treatment abrogates ischemia-induced neuronal cell death by preserving mitochondrial integrity through upregulation of the Parkinson’s disease-associated protein DJ-1. CNS Neurosci Ther 22:602–610

    Article  CAS  Google Scholar 

  40. Chen ZR, Ma Y, Guo HH, Lu ZD, Jin QH (2018) Therapeutic efficacy of cyclosporin A against spinal cord injury in rats with hyperglycemia. Mol Med Rep 17:4369–4375

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Matsumoto S, Murozono M, Kanazawa M, Nara T, Ozawa T, Watanabe Y (2018) Edaravone and cyclosporine A as neuroprotective agents for acute ischemic stroke. Acute Med Surg 5:213–221

    Article  Google Scholar 

  42. Forsse A, Nielsen TH, Nygaard KH, Nordstrom CH, Gramsbergen JB, Poulsen FR (2019) Cyclosporin A ameliorates cerebral oxidative metabolism and infarct size in the endothelin-1 rat model of transient cerebral ischaemia. Sci Rep 9:3702

    Article  Google Scholar 

  43. Straathof K, Anoop P, Allwood Z, Silva J, Nikolajeva O, Chiesa R, Veys P, Amrolia PJ, Rao K (2017)Long-term outcome following cyclosporine-related neurotoxicity in paediatric allogeneic haematopoietic stem cell transplantation. Bone Marrow Transplant 52:159–162

    Article  CAS  Google Scholar 

  44. Baky NA, Fadda L, Al-Rasheed NM, Al-Rasheed NM, Mohamed A, Yacoub H (2016) Neuroprotective effect of carnosine and cyclosporine-A against inflammation, apoptosis, and oxidative brain damage after closed head injury in immature rats. Toxicol Mech Methods 26:1–10

  45. Luo XD, Liu QF, Ning J, Fan ZP, Xu D, Wei YQ (2008) [A clinical analysis of severe cyclosporine A-related neurotoxicity after allogenic hematopoietic stem cell transplantation]. Zhonghua Nei Ke Za Zhi 47:40–43

  46. Teksam M, Casey SO, Michel E, Truwit CL (2001) Subarachnoid hemorrhage associated with cyclosporine A neurotoxicity in a bone-marrow transplant recipient. Neuroradiology 43:242–245

  47. O'Collins VE, Macleod MR, Donnan GA, Horky LL, van der Worp BH, Howells DW (2006) 1,026 experimental treatments in acute stroke. Ann Neurol 59:467–477

  48. Schulz KF, Chalmers I, Hayes RJ, Altman DG (1995) Empirical evidence of bias. Dimensions of methodological quality associated with estimates of treatment effects in controlled trials. JAMA 273:408–412

Download references

Author information

Authors and Affiliations

Authors

Contributions

QZ and RSX conceived and designed the study. MY, WWQ, WFC, and RSX contributed to the literature searches, study selection, data extraction, and quality assessment. QZ, WWQ, and MY did the metaanalysis. QZ, WWQ, and MY analyzed and interpreted the data. QZ and RSX drafted the initial manuscript and QZ, WWQ, MY, WFC, and RSX made critical revisions to the intellectual content. All authors approved the final version of the study.

Corresponding authors

Correspondence to Wenfeng Cao or Renshi Xu.

Ethics declarations

Conflict of interest

None.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(TIF 6.05 mb)

ESM 2

(TIF 4.94 mb)

ESM 3

(TIF 0.98 mb)

ESM 4

(DOCX 27.1 kb)

ESM 5

(DOCX 34.0 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Q., Yuan, M., Qiu, W. et al. Preclinical studies of mesenchymal stem cells transplantation in amyotrophic lateral sclerosis: a systemic review and metaanalysis. Neurol Sci 42, 3637–3646 (2021). https://doi.org/10.1007/s10072-020-05036-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-020-05036-7

Keywords

Navigation