Skip to main content
Log in

DNAQL: a query language for DNA sticker complexes

  • Published:
Natural Computing Aims and scope Submit manuscript

Abstract

DNA computing has a rich history of computing paradigms with great expressive power. However, far less expressive power is needed for data manipulation. Indeed, the relational algebra, the yardstick of database systems, is expressible in first-order logic, and thus less powerful than Turing-complete models. Turing-complete DNA computing models have to account for many and varied scenarios. A DNA implementation of data manipulations might be nimbler and perform its operation faster than a Turing-complete DNA computing model. Hence, we propose a restrictive model for implementing data manipulation operations, focused on implementability in DNA. We call this model the sticker complex model. A forte of the sticker complex model, is its ability to detect when hybridization becomes an uncontrolled chain reaction. Such chain reactions make hybridization less predictable and thus less attractive for deterministic computations. Next, we define a query language on sticker complexes, called DNAQL. DNAQL is a typed, applicative functional programming language, powerful enough to simulate the relational algebra on sticker complexes. The type system enjoys a number of desirable properties such as soundness, maximality, and tightness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Abiteboul S, Hull R, Vianu V (1995) Foundations of databases. Addison-Wesley Publishing Company Inc., Boston

    MATH  Google Scholar 

  • Adleman LM (1994) Molecular computation of solutions to combinatorial problems. Science 226:1021–1024

    Article  Google Scholar 

  • Amos M (2005) Theoretical and experimental DNA computation. Springer, Berlin

    MATH  Google Scholar 

  • Appuswamy R, Le Brigand K, Barbry P, Antonini M, Madderson O, Freemont P, McDonald J, Heinis T (2019) OligoArchive: using DNA in the DBMS storage hierarchy. In: Proceedings 9th conference on innovative data systems research (CIDR 2019)

  • Arita M, Hagiya M, Suyama A (1997) Joining and rotating data with molecules. In: Proceedings 1997 IEEE international conference on evolutionary computation (ICEC ’97), pp 243–248

  • Baum EB (1995) Building an associative memory vastly larger than the brain. Science 268:583–585

    Article  Google Scholar 

  • Bornholt J, Lopez R, Carmean D, Ceze L, Seelig G, Strauss K (2016) A DNA-based archival storage system. In: Conte T, Zhou Y (eds) Proceedings 21st international conference on architectural support for programming languages and operating systems (ASPLOS ’16). ACM, pp 637–649

  • Brijder R, Gillis JJM, Van den Bussche J (2012) A type system for DNAQL. In: Stefanovic D, Turberfield A (eds) Proceedings 18th international conference on DNA computing and molecular programming (DNA18), vol 7433. Springer, pp 12–24

  • Brijder R, Gillis JJM, Van den Bussche J (2013a) Graph-theoretic formalization of hybridization in DNA sticker complexes. Nat Comput 12:223–234

    Article  MathSciNet  Google Scholar 

  • Brijder R, Gillis JJM, Van den Bussche J (2013b) The DNA query language DNAQL. In: Proceedings 16th international conference on database theory. ACM Press

  • Brijder R, Gillis JJM, Van den Bussche J (2019) The relational completeness of the DNA query language DNAQL. In preparation

  • Cardelli L (2005) Abstract machines in systems biology. Transactions on computational systems biology III, vol 3737. Lecture notes in computer science. Springer, pp 145–178

  • Cardelli L (2009) Strand algebras for DNA computing. In: Deaton R, Suyama A (eds), pp 12–24

  • Chen J, Deaton RJ, Wang Y-Z (2005) A DNA-based memory with in vitro learning and associative recall. Nat Comput 4(2):83–101

    Article  MathSciNet  Google Scholar 

  • Church GM, Gao Y, Kosuri S (2012) Next-generation digital information storage in DNA. Science 337(6102):1628

    Article  Google Scholar 

  • Date CJ (2004) An introduction to database systems. Addison-Wesley, Boston

    MATH  Google Scholar 

  • Deaton RJ, Suyama A (eds) (2009) Proceedings 15th international meeting on DNA computing and molecular programming, vol 5877. Lecture notes in computer science. Springer

  • Diatchenko L, Lau YF, Campbell AP, Chenchik A, Moqadam F, Huang B, Lukyanov S, Lukyanov K, Gurskaya N, Sverdlov ED, Siebert PD (1996) Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc Natl Acad Sci 93(12):6025–6030

    Article  Google Scholar 

  • Garcia-Molina H, Ullman JD, Widom J (2009) Database systems: the complete book. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Gillis J, Van den Bussche J (2010) A formal model for databases in DNA. In: Horimoto K, Nakatsui M, Popov N (eds) Algebraic and numeric biology, vol 6479. Lecture notes in computer science. Springer, pp 18–37

  • Goldman N, Bertone P, Chen S, Dessimoz C, LeProust EM, Sipos B, Birney E (2013) Towards practical, high-capacity, low-maintenance information storage in synthesized DNA. Science 494:77–80

    Google Scholar 

  • Gunter CA, Mitchell JC (eds) (1994) Theoretical aspects of object-oriented programming. MIT Press, Cambridge

    Google Scholar 

  • Liu Q, Wang L, Frutos AG, Condon AE, Corn RM, Smith LM (2000) DNA computing on surfaces. Nature 403:175–179

    Article  Google Scholar 

  • Majumder U, Reif JH (2009) Design of a biomolecular device that executes process algebra. In: Deaton R, Suyama A (eds), pp 97–105

  • Marathe A, Condon AE, Corn RM (2001) On combinatorial DNA word design. J Comput Biol 8(3):201–220

    Article  Google Scholar 

  • Papakonstaninou Y, Velikhov P (1999) Enhancing semistructured data mediators with document type definitions. In: Proceedings 15th international conference on data engineering. IEEE Computer Society, pp 136–145

  • Paun G, Rozenberg G, Salomaa A (1998) DNA computing. Springer, Berlin

    Book  Google Scholar 

  • Pierce BC (2002) Types and programming languages. MIT Press, Cambridge

    MATH  Google Scholar 

  • Qian L, Soloveichik D, Winfree E (2011) Efficient Turing-universal computation with DNA polymers. In: Sakakibara Y, Mi Y (eds) Proceedings 16th international conference on DNA computing and molecular programming, vol 6518. Lecture notes in computer science. Springer, pp 123–140

  • Reif JH, LaBean TH, Pirrung M, Rana VS, Guo B, Kingsford C, Wickham GS (2002) Experimental construction of very large scale DNA databases with associative search capability. In: Revised papers from the 7th international workshop on DNA-based computers: DNA computing, DNA 7. Springer, London, UK, pp 231–247

  • Reif JH (1999) Parallel biomolecular computation: models and simulations. Algorithmica 25:142–175

    Article  MathSciNet  Google Scholar 

  • Roweis S, Winfree E, Burgoyne R, Chelyapov NV, Goodman MF, Rothemund PWK, Adleman LM (1998) A sticker-based model for DNA computation. J Comput Biol 5(4):615–629

    Article  Google Scholar 

  • Sager J, Stefanovic D (2006) Designing nucleotide sequences for computation: a survey of constraints. In: Carbone A, Pierce N (eds) DNA computing, vol 3892. Lecture notes in computer science. Springer, Berlin, pp 275–289

  • Schiefer N, Winfree E (2015) Universal computation and optimal construction in the chemical reaction network-controlled tile assembly model. In: Phillips A, Yin P (eds) Proceedings 21st international conference on DNA computing and molecular programming (DNA 21), vol 9211. Lecture notes in computer science. Springer, pp 34–54

  • Shortreed MR, Chang SB, Hong D, Phillips M, Campion B, Tulpan D, Andronescu M, Condon AE, Hoos HH, Smith LM (2005) A thermodynamic approach to designing structure-free combinatorial DNA word sets. Nucleic Acids Res 33(15):4965–4977

    Article  Google Scholar 

  • Soloveichik D, Seelig G, Winfree E (2010) DNA as a universal substrate for chemical kinetics. PNAS 107(12):5393–5398

    Article  Google Scholar 

  • Tabatabaei Yazdi SMH, Yuan Y, Ma J, Zhao H, Milenkovic O (2015) A rewritable, random-access DNA-based storage system. Sci Rep 5:14138

    Article  Google Scholar 

  • Van den Bussche J, Van Gucht D, Vansummeren S (2007) A crash course in database queries. In: Proceedings 26th ACM symposium on principles of database systems. ACM Press, pp 143–154

  • Winfree E, Yang X, Seeman NC (1998) Universal computation via self-assembly of DNA: some theory and experiments. In: Landweber LF, Baum EB (eds) DNA based computers II: DIMACS workshop. American Mathematical Society, pp 191–213

  • Woods D, Doty D, Myhrvold C, Hui J, Zhou F, Yin P, Winfree E (2019) Diverse and robust molecular algorithms using reprogrammable DNA self-assembly. Nature 567:366–372

    Article  Google Scholar 

  • Yamamoto M, Kita Y, Kashiwamura S, Kameda A, Ohuchi A (2006) Development of DNA relational databases and data manipulation experiments. In: Mao C, Yokomori T (eds) Proceedings 12th international meeting on DNA computing, vol 4287. Lecture notes in computer science. Springer, pp 418–427

  • Yeh C-W, Wu K-R, Meng W (2012) Development of a database model based on parallel biomolecular computation. Simul Model Pract Theory 21(1):39–51

    Article  Google Scholar 

Download references

Acknowledgements

Jan Van den Bussche is partially supported by the National Natural Science Foundation of China (61972455).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Van den Bussche.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

R. Brijder: Postdoctoral fellow of the Research Foundation—Flanders (FWO). Joris J. M. Gillis: Ph.D. fellow of the Research Foundation—Flanders (FWO).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brijder, R., Gillis, J.J.M. & Van den Bussche, J. DNAQL: a query language for DNA sticker complexes. Nat Comput 20, 161–189 (2021). https://doi.org/10.1007/s11047-020-09839-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11047-020-09839-7

Keywords

Navigation