Skip to main content

Advertisement

Log in

The Effect of Two Dietary Protein Sources on Water Quality and the Aquatic Microbial Communities in Marron (Cherax cainii) Culture

  • Microbiology of Aquatic Systems
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Feeding freshwater crayfish species with different diets not only affects the water quality but also induces the abundance of various microbial communities in their digestive tracts. In this context, very limited research has been undertaken to understand the impacts of various protein incorporated aqua-diets on the characteristics of water and its microbial communities. In this study, we have critically analysed the water quality parameters including pH, dissolved oxygen, nitrate, nitrite, ammonia and phosphorus, as well as bacterial communities under marron (Cherax cainii) aquaculture, fed fishmeal (FM) and poultry by-product meal (PBM)-based diets for 60 days. The results unveiled that over the time, feeding has significant impacts on organic waste accumulation, especially ammonia, nitrate, nitrite and phosphate, while no effects were observed on pH and dissolved oxygen. Analysis of 16S rRNA sequence data of water sample indicated significant (P < 0.05) shift of microbial abundance in post-fed FM and PBM water with the evidence of microbial transmission from the gut of marron. Post-fed marron resulted in a significant correlation of Hafnia, Enterobacter, Candidatus Bacilloplasma and Aquitella with the quality and microbial population of water. The results of this study generated valuable knowledge database of microbes-water relationship for better health management practices and production of marron aquaculture fed with FM and PBM diets in under restricted feeding regime with the feeding ratios provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Data is available at the National Centre for Biotechnology Information (NCBI), with accession number PRJNA613507.

References

  1. Foysal MJ, Momtaz F, Robiul Kawser AQM, Chaklader MR, Siddik MAB, Lamichhane B, Tay ACY, Rahman MM, Fotedar R (2019) Microbiome patterns reveal the transmission of pathogenic bacteria in hilsa fish (Tenualosa ilisha) marketed for human consumption in Bangladesh. J. Appl. Microbiol. 126(6):1879–1890. https://doi.org/10.1111/jam.14257

    Article  CAS  PubMed  Google Scholar 

  2. Oidtmann B, Dixon P, Way K, Joiner C, Bayley AE (2018) Risk of waterborne virus spread – review of survival of relevant fish and crustacean viruses in the aquatic environment and implications for control measures. Rev. Aquac. 10(3):641–669. https://doi.org/10.1111/raq.12192

    Article  Google Scholar 

  3. Braga RM, Dourado MN, Araújo WL (2016) Microbial interactions: ecology in a molecular perspective. Braz. J. Microbiol. 47:86–98. https://doi.org/10.1016/j.bjm.2016.10.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bentzon-Tilia M, Sonnenschein EC, Gram L (2016) Monitoring and managing microbes in aquaculture – towards a sustainable industry. Microb. Biotechnol. 9(5):576–584. https://doi.org/10.1111/1751-7915.12392

    Article  PubMed  PubMed Central  Google Scholar 

  5. Foysal MJ, Fotedar R, Tay C-Y, Gupta SK (2019) Dietary supplementation of black soldier fly (Hermetica illucens) meal modulates gut microbiota, innate immune response and health status of marron (Cherax cainii, Austin 2002) fed poultry-by-product and fishmeal based diets. PeerJ 7:e6891. https://doi.org/10.7717/peerj.6891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Miao S, Zhao C, Zhu J, Hu J, Dong X, Sun L (2018) Dietary soybean meal affects intestinal homoeostasis by altering the microbiota, morphology and inflammatory cytokine gene expression in northern snakehead. Sci. Rep. 8(1):113. https://doi.org/10.1038/s41598-017-18430-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Siddik MAB, Fotedar R, Chaklader MR, Foysal MJ, Nahar A, Howieson J (2020) Fermented animal source protein as substitution of fishmeal on intestinal microbiota, immune-related cytokines and resistance to Vibrio mimicus in freshwater crayfish (Cherax cainii). Front. Physiol. 10(1635). https://doi.org/10.3389/fphys.2019.01635

  8. Gupta SK, Fotedar R, Foysal MJ, Priyam M, Siddik MAB, Chaklader MR, Dao TTT, Howieson J (2020) Impact of varied combinatorial mixture of non-fishmeal ingredients on growth, metabolism, immunity and gut microbiota of Lates calcarifer (Bloch, 1790) fry. Sci. Rep. 10(1):17091. https://doi.org/10.1038/s41598-020-72726-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Adamovsky O, Buerger AN, Wormington AM, Ector N, Griffitt RJ, Bisesi JH, Martyniuk CJ (2018) The gut microbiome and aquatic toxicology: an emerging concept for environmental health. Environ. Toxicol. Chem. 37(11):2758–2775. https://doi.org/10.1002/etc.4249

    Article  CAS  PubMed  Google Scholar 

  10. Hillman ET, Lu H, Yao T, Nakatsu CH (2017) Microbial ecology along the gastrointestinal tract. Microbes and Environments advpub. 32:300–313. https://doi.org/10.1264/jsme2.ME17017

    Article  Google Scholar 

  11. Elsaidy N, Abouelenien F, Kirrella GAK (2015) Impact of using raw or fermented manure as fish feed on microbial quality of water and fish. The Egyptian Journal of Aquatic Research 41(1):93–100. https://doi.org/10.1016/j.ejar.2015.01.002

    Article  Google Scholar 

  12. Mark Ibekwe A, Murinda SE, Murry MA, Schwartz G, Lundquist T (2017) Microbial community structures in high rate algae ponds for bioconversion of agricultural wastes from livestock industry for feed production. Sci. Total Environ. 580:1185–1196. https://doi.org/10.1016/j.scitotenv.2016.12.076

    Article  CAS  PubMed  Google Scholar 

  13. Cardona E, Gueguen Y, Magré K, Lorgeoux B, Piquemal D, Pierrat F, Noguier F, Saulnier D (2016) Bacterial community characterization of water and intestine of the shrimp Litopenaeus stylirostris in a biofloc system. BMC Microbiol. 16(1):157. https://doi.org/10.1186/s12866-016-0770-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Crab R, Defoirdt T, Bossier P, Verstraete W (2012) Biofloc technology in aquaculture: beneficial effects and future challenges. Aquaculture 356-357:351–356. https://doi.org/10.1016/j.aquaculture.2012.04.046

    Article  Google Scholar 

  15. Delamare-Deboutteville J, Batstone DJ, Kawasaki M, Stegman S, Salini M, Tabrett S, Smullen R, Barnes AC, Hülsen T (2019) Mixed culture purple phototrophic bacteria is an effective fishmeal replacement in aquaculture. Water Research X 4:100031. https://doi.org/10.1016/j.wroa.2019.100031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhu Y, Hassan YI, Lepp D, Shao S, Zhou T (2017) Strategies and methodologies for developing microbial detoxification systems to mitigate mycotoxins. Toxins 9(4):130. https://doi.org/10.3390/toxins9040130

    Article  CAS  PubMed Central  Google Scholar 

  17. Foysal MJ, Fotedar R, Siddik MAB, Tay A (2020) Lactobacillus acidophilus and L. plantarum improve health status, modulate gut microbiota and innate immune response of marron (Cherax cainii). Scientific Reports 10(1):5916. https://doi.org/10.1038/s41598-020-62655-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Asaduzzaman M, Wahab MA, Verdegem MCJ, Huque S, Salam MA, Azim ME (2008) C/N ratio control and substrate addition for periphyton development jointly enhance freshwater prawn Macrobrachium rosenbergii production in ponds. Aquaculture 280(1):117–123. https://doi.org/10.1016/j.aquaculture.2008.04.019

    Article  CAS  Google Scholar 

  19. Azim ME, Little DC (2008) The biofloc technology (BFT) in indoor tanks: water quality, biofloc composition, and growth and welfare of Nile tilapia (Oreochromis niloticus). Aquaculture 283(1):29–35. https://doi.org/10.1016/j.aquaculture.2008.06.036

    Article  CAS  Google Scholar 

  20. Hari B, Madhusoodana Kurup B, Varghese JT, Schrama JW, Verdegem MCJ (2004) Effects of carbohydrate addition on production in extensive shrimp culture systems. Aquaculture 241(1):179–194. https://doi.org/10.1016/j.aquaculture.2004.07.002

    Article  CAS  Google Scholar 

  21. Hari B, Madhusoodana Kurup B, Varghese JT, Schrama JW, Verdegem MCJ (2006) The effect of carbohydrate addition on water quality and the nitrogen budget in extensive shrimp culture systems. Aquaculture 252(2):248–263. https://doi.org/10.1016/j.aquaculture.2005.06.044

    Article  CAS  Google Scholar 

  22. Saputra I, Fotedar R, Gupta SK, Siddik MAB, Foysal MJ (2019) Effects of different dietary protein sources on the immunological and physiological responses of marron, Cherax cainii (Austin and Ryan, 2002) and its susceptibility to high temperature exposure. Fish & Shellfish Immunology 88:567–577. https://doi.org/10.1016/j.fsi.2019.03.012

    Article  CAS  Google Scholar 

  23. Morrissy N (1990) Optimum and favourable temperatures for growth of <I>Cherax tenuimanus</I> (Smith 1912) (Decapoda: Parastoacidae). Mar. Freshw. Res. 41(6):735–746. https://doi.org/10.1071/MF9900735

    Article  Google Scholar 

  24. Ambas I, Fotedar R, Buller N (2017) Synbiotic effect of Bacillus mycoides and organic selenium on immunity and growth of marron, Cherax cainii (Austin, 2002). Aquac. Res. 48(6):2729–2740. https://doi.org/10.1111/are.13105

    Article  CAS  Google Scholar 

  25. Wu YB, Ren X, Chai XJ, Li P, Wang Y (2018) Replacing fish meal with a blend of poultry by-product meal and feather meal in diets for giant croaker (Nibea japonica). Aquac. Nutr. 24(3):1085–1091. https://doi.org/10.1111/anu.12647

    Article  CAS  Google Scholar 

  26. Yang Y, Xie S, Cui Y, Zhu X, Lei W, Yang Y (2006) Partial and total replacement of fishmeal with poultry by-product meal in diets for gibel carp, Carassius auratus gibelio Bloch. Aquac. Res. 37(1):40–48. https://doi.org/10.1111/j.1365-2109.2005.01391.x

    Article  CAS  Google Scholar 

  27. Bransden M, Carter C, Nowak B (2001) Effects of dietary protein source on growth, immune function, blood chemistry and disease resistance of Atlantic salmon (Salmo salar L.) parr. Anim. Sci. 73:105–113

    Article  CAS  Google Scholar 

  28. Saoud IP, Rodgers LJ, Davis DA, Rouse DB (2008) Replacement of fish meal with poultry by-product meal in practical diets for redclaw crayfish (Cherax quadricarinatus). Aquac. Nutr. 14(2):139–142. https://doi.org/10.1111/j.1365-2095.2007.00513.x

    Article  CAS  Google Scholar 

  29. Liang Z, Liu F, Wang W, Zhang P, Sun X, Wang F, Kell H (2019) High-throughput sequencing revealed differences of microbial community structure and diversity between healthy and diseased Caulerpa lentillifera. BMC Microbiol. 19(1):225. https://doi.org/10.1186/s12866-019-1605-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Foysal MJ, Fotedar R, Tay C-Y, Gupta SK (2020) Biological filters regulate water quality, modulate health status, immune indices and gut microbiota of freshwater crayfish, marron (Cherax cainii, Austin, 2002). Chemosphere 247:125821. https://doi.org/10.1016/j.chemosphere.2020.125821

    Article  CAS  PubMed  Google Scholar 

  31. Foysal MJ, Alam M, Kawser AQMR, Hasan F, Rahman MM, Tay C-Y, Prodhan MSH, Gupta SK (2020) Meta-omics technologies reveals beneficiary effects of Lactobacillus plantarum as dietary supplements on gut microbiota, immune response and disease resistance of Nile tilapia (Oreochromis niloticus). Aquaculture 520:734974. https://doi.org/10.1016/j.aquaculture.2020.734974

    Article  CAS  Google Scholar 

  32. Bavithra G, Azevedo J, Oliveira F, Morais J, Pinto E, Ferreira IMPLVO, Vasconcelos V, Campos A, Almeida CMR (2020) Assessment of constructed wetlands’ potential for the removal of cyanobacteria and microcystins (MC-LR). Water 12(1). https://doi.org/10.3390/w12010010

  33. Albanese D, Fontana P, De Filippo C, Cavalieri D, Donati C (2015) MICCA: a complete and accurate software for taxonomic profiling of metagenomic data. Sci. Rep. 5. https://doi.org/10.1038/srep09743

  34. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO (2012) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41(D1):D590–D596. https://doi.org/10.1093/nar/gks1219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mirarab S, Nguyen N, Guo S, Wang L-S, Kim J, Warnow T (2014) PASTA: ultra-large multiple sequence alignment for nucleotide and amino-acid sequences. J. Comput. Biol. 22(5):377–386. https://doi.org/10.1089/cmb.2014.0156

    Article  CAS  PubMed  Google Scholar 

  36. Kuczynski J, Stombaugh J, Walters WA, González A, Caporaso JG, Knight R (2012) Using QIIME to analyze 16S rRNA gene sequences from microbial communities. Current Protocols in Microbiology 27(1):1E.5.1–1E.5.20. https://doi.org/10.1002/9780471729259.mc01e05s27

    Article  Google Scholar 

  37. Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, Huttenhower C (2011) Metagenomic biomarker discovery and explanation. Genome Biol. 12(6):R60. https://doi.org/10.1186/gb-2011-12-6-r60

    Article  PubMed  PubMed Central  Google Scholar 

  38. Begum NN, Chakraborty SC, Zaher M, Abdul MM, Gupta MV (1994) Replacement of fishmeal by low-cost animal protein as a quality fish feed ingredient for indian major carp, Labeo rohita, fingerlings. J. Sci. Food Agric. 64(2):191–197. https://doi.org/10.1002/jsfa.2740640207

    Article  CAS  Google Scholar 

  39. Lazzari R, Baldisserotto B (2018) Nitrogen and phosphorus waste in fish farming. Boletim do Instituto de Pesca; Vol 34 No 4 (2008): BOLETIM DO INSTITUTO DE PESCA. https://www.pesca.sp.gov.br/boletim/index.php/bip/article/view/831. Accessed: 16 November 2020

  40. Azim ME, Little DC, Bron JE (2008) Microbial protein production in activated suspension tanks manipulating C:N ratio in feed and the implications for fish culture. Bioresour. Technol. 99(9):3590–3599. https://doi.org/10.1016/j.biortech.2007.07.063

    Article  CAS  PubMed  Google Scholar 

  41. Páez-Osuna F, Ruiz-Fernández A (2005) Environmental load of nitrogen and phosphorus from extensive, semiintensive, and intensive shrimp farms in the Gulf of California ecoregion. Bulletin of Environmental Contamination and Toxicology 74 (4):681-688. doi:https://doi.org/10.1007/s00128-005-0637-8

  42. Jackson C, Preston N, Thompson PJ, Burford M (2003) Nitrogen budget and effluent nitrogen components at an intensive shrimp farm. Aquaculture 218(1):397–411. https://doi.org/10.1016/S0044-8486(03)00014-0

    Article  CAS  Google Scholar 

  43. Xia LZ, Yang LZ, Yan MC (2004) Nitrogen and phosphorus cycling in shrimp ponds and the measures for sustainable management. Environ. Geochem. Health 26(2):245–251. https://doi.org/10.1023/B:EGAH.0000039587.64830.43

    Article  CAS  PubMed  Google Scholar 

  44. Gallagher ML, Degani G (1988) Poultry meal and poultry oil as sources of protein and lipid in the diet of European eels (Anguilla anguilla). Aquaculture 73(1):177–187. https://doi.org/10.1016/0044-8486(88)90052-X

    Article  CAS  Google Scholar 

  45. Emre Y, Sevgili H, Diler İ (2003) Replacing fish meal with poultry by-product meal in practical diets for mirror carp (Cyprinus carpio) fingerlings. Turk. J. Fish. Aquat. Sci. 3(2):81–85

    Google Scholar 

  46. Fasakin EA, Serwata RD, Davies SJ (2005) Comparative utilization of rendered animal derived products with or without composite mixture of soybean meal in hybrid tilapia (Oreochromis niloticus×Oreochromis mossambicus) diets. Aquaculture 249(1):329–338. https://doi.org/10.1016/j.aquaculture.2005.02.059

    Article  Google Scholar 

  47. Garza de Yta A, Davis DA, Rouse DB, Ghanawi J, Saoud IP (2012) Evaluation of practical diets containing various terrestrial protein sources on survival and growth parameters of redclaw crayfish Cherax quadricarinatus. Aquac. Res. 43(1):84–90. https://doi.org/10.1111/j.1365-2109.2011.02806.x

    Article  CAS  Google Scholar 

  48. García-Pérez OD, Cruz-Valdez JC, Ramírez-Martínez C, Villarreal-Cavazos D, Gamboa-Delgado J (2018) Exploring the contribution of dietary protein from poultry by-product meal and fish meal to the growth of catfish Ictalurus punctatus by means of nitrogen stable isotopes. Latin american journal of aquatic research 46 (1):37–44. doi:https://doi.org/10.3856/vol46-issue1-fulltext-5

  49. Webster CD, Thompson KR, Morgan AM, Grisby EJ, Gannam AL (2000) Use of hempseed meal, poultry by-product meal, and canola meal in practical diets without fish meal for sunshine bass (Morone chrysops×M. saxatilis). Aquaculture 188(3):299–309. https://doi.org/10.1016/S0044-8486(00)00338-0

    Article  Google Scholar 

  50. Rossi W, Davis DA (2012) Replacement of fishmeal with poultry by-product meal in the diet of Florida pompano Trachinotus carolinus L. Aquaculture 338-341:160–166. https://doi.org/10.1016/j.aquaculture.2012.01.026

    Article  CAS  Google Scholar 

  51. Rawles SD, Thompson KR, Brady YJ, Metts LS, Aksoy MY, Gannam AL, Twibell RG, Ostrand S, Webster CD (2011) Effects of replacing fish meal with poultry by-product meal and soybean meal and reduced protein level on the performance and immune status of pond-grown sunshine bass (Morone chrysops × M. saxatilis). Aquac. Nutr. 17(3):e708–e721. https://doi.org/10.1111/j.1365-2095.2010.00831.x

    Article  Google Scholar 

  52. Riche M (2015) Nitrogen utilization from diets with refined and blended poultry by-products as partial fish meal replacements in diets for low-salinity cultured Florida pompano, Trachinotus carolinus. Aquaculture 435:458–466. https://doi.org/10.1016/j.aquaculture.2014.10.001

    Article  CAS  Google Scholar 

  53. Kureshy N, Davis DA, Arnold CR (2000) Partial replacement of fish meal with meat-and-bone meal, flash-dried poultry by-product meal, and enzyme-digested poultry by-product meal in practical diets for juvenile red drum. N. Am. J. Aquac. 62(4):266–272. https://doi.org/10.1577/1548-8454(2000)062<0266:PROFMW>2.0.CO;2

    Article  Google Scholar 

  54. Shapawi R, Ng W-K, Mustafa S (2007) Replacement of fish meal with poultry by-product meal in diets formulated for the humpback grouper, Cromileptes altivelis. Aquaculture 273(1):118–126. https://doi.org/10.1016/j.aquaculture.2007.09.014

    Article  CAS  Google Scholar 

  55. Ibrahim AB, Khan MA, Norrakiah AS, Fazleen IZ (2014) Fresh water aquaculture fish consumption in Malaysia and heavy metals risk exposure to consumers. Int. Food Res. J. 21(6):2109–2113

    Google Scholar 

  56. Avnimelech Y (2006) Bio-filters: the need for an new comprehensive approach. Aquac. Eng. 34(3):172–178. https://doi.org/10.1016/j.aquaeng.2005.04.001

    Article  Google Scholar 

  57. Ebeling JM, Timmons MB, Bisogni JJ (2006) Engineering analysis of the stoichiometry of photoautotrophic, autotrophic, and heterotrophic removal of ammonia-nitrogen in aquaculture systems. Aquaculture 257(1–4):346–358. https://doi.org/10.1016/j.aquaculture.2006.03.019

    Article  Google Scholar 

  58. Harder R, Wielemaker R, Larsen TA, Zeeman G, Öberg G (2019) Recycling nutrients contained in human excreta to agriculture: pathways, processes, and products. Crit. Rev. Environ. Sci. Technol. 49(8):695–743. https://doi.org/10.1080/10643389.2018.1558889

    Article  Google Scholar 

  59. Pathma J, Sakthivel N (2012) Microbial diversity of vermicompost bacteria that exhibit useful agricultural traits and waste management potential. SpringerPlus 1(1):26. https://doi.org/10.1186/2193-1801-1-26

    Article  PubMed  PubMed Central  Google Scholar 

  60. Rastogi M, Nandal M, Khosla B (2020) Microbes as vital additives for solid waste composting. Heliyon 6(2):e03343. https://doi.org/10.1016/j.heliyon.2020.e03343

    Article  PubMed  PubMed Central  Google Scholar 

  61. Nugroho RA, Fotedar R (2013) Growth, survival and physiological condition of cultured marron. J. Agric. Sci. Technol. 3:125–135

    Google Scholar 

  62. Alfiansah YR, Hassenruck C, Kunzmann A, Taslihan A, Harder J, Garde A (2018) Bacterial abundance and community composition in pond water from shrimp aquaculture systems with different stocking densities. Front. Microbiol. 9. https://doi.org/10.3389/fmicb.2018.02457

  63. Allen MJ, Edberg SC, Reasoner DJ (2004) Heterotrophic plate count bacteria—what is their significance in drinking water? Int. J. Food Microbiol. 92(3):265–274. https://doi.org/10.1016/j.ijfoodmicro.2003.08.017

    Article  PubMed  Google Scholar 

  64. Emerenciano MGC, Martínez-Córdova LR, Martínez-Porchas M, Miranda-Baeza A (2017) Biofloc technology (BFT): a tool for water quality management in aquaculture. Water quality 5:92–109

    Google Scholar 

  65. Qin Y, Hou J, Deng M, Liu Q, Wu C, Ji Y, He X (2016) Bacterial abundance and diversity in pond water supplied with different feeds. Sci. Rep. 6(1):35232. https://doi.org/10.1038/srep35232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Allison SD, Martiny JBH (2008) Resistance, resilience, and redundancy in microbial communities. Proceedings of the National Academy of Sciences 105 (Supplement 1):11512. https://doi.org/10.1073/pnas.0801925105

  67. Xiong J, Zhu J, Wang K, Wang X, Ye X, Liu L, Zhao Q, Hou M, Qiuqian L, Zhang D (2014) The temporal scaling of bacterioplankton composition: high turnover and predictability during shrimp cultivation. Microbial ecology 67 (2):256-264. Doi:https://doi.org/10.1007/s00248-013-0336-7

  68. Noorak S, Rakkhiaw S, Limjirakhajornt K, Uppabullung A, Keawtawee T, Sangnoi Y (2018) Nitrite oxidizing bacteria for water treatment in coastal aquaculture system. IOP Conference Series: Earth and Environmental Science 137:012005. https://doi.org/10.1088/1755-1315/137/1/012005

    Article  Google Scholar 

  69. Zhang D, Wang X, Xiong J, Zhu J, Wang Y, Zhao Q, Chen H, Guo A, Wu J, Dai H (2014) Bacterioplankton assemblages as biological indicators of shrimp health status. Ecol. Indic. 38:218–224. https://doi.org/10.1016/j.ecolind.2013.11.002

    Article  CAS  Google Scholar 

  70. Leclercq S, Dittmer J, Bouchon D, Cordaux R (2014) Phylogenomics of “Candidatus Hepatoplasma crinochetorum,” a lineage of mollicutes associated with noninsect arthropods. Genome Biology and Evolution 6(2):407–415. https://doi.org/10.1093/gbe/evu020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Meziti A, Ramette A, Mente E, Kormas KA (2010) Temporal shifts of the Norway lobster (Nephrops norvegicus) gut bacterial communities. FEMS Microbiol. Ecol. 74(2):472–484. https://doi.org/10.1111/j.1574-6941.2010.00964.x

    Article  CAS  PubMed  Google Scholar 

  72. Chen W-Y, Ng TH, Wu J-H, Chen J-W, Wang H-C (2017) Microbiome dynamics in a shrimp grow-out pond with possible outbreak of acute hepatopancreatic necrosis disease. Sci. Rep. 7(1):9395. https://doi.org/10.1038/s41598-017-09923-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Foysal MJ, Momtaz F, Ali MH, Siddik MAB, Chaklader MR, Rahman MM, Prodhan MSH, Cole A (2019) Molecular characterization and interactome analysis of aerolysin (aer) gene from fish pathogen Aeromonas veronii: the pathogenicity inferred from sequence divergence and linked to histidine kinase (cheA). J. Fish Dis. 42(4):465–475. https://doi.org/10.1111/jfd.12954

    Article  CAS  PubMed  Google Scholar 

  74. Gołaś I, Szmyt M, Potorski J, Łopata M, Gotkowska-Płachta A, Glińska-Lewczuk K (2019) Distribution of Pseudomonas fluorescens and Aeromonas hydrophila bacteria in a recirculating aquaculture system during farming of european grayling (Thymallus thymallus L.) Broodstock. Water 11(2):376. https://doi.org/10.3390/w11020376

    Article  CAS  Google Scholar 

  75. Thillai Sekar V, Santiago TC, Vijayan KK, Alavandi SV, Stalin Raj V, Rajan JJS, Sanjuktha M, Kalaimani N (2008) Involvement of Enterobacter cloacae in the mortality of the fish, Mugil cephalus. Lett. Appl. Microbiol. 46(6):667–672. https://doi.org/10.1111/j.1472-765X.2008.02365.x

    Article  CAS  PubMed  Google Scholar 

  76. Surendraraj A, Farvin KS, Yathavamoorthi R, Thampuran N (2009) Enteric bacteria associated with farmed freshwater fish and its culture environment in Kerala, India. Research Journal of Microbiology 4 (9):334-344. doi:https://doi.org/10.3923/jm.2009.334.344

  77. Jahangiri L, Esteban MÁ (2018) Administration of probiotics in the water in finfish aquaculture systems: a review. Fishes 3(3):33. https://doi.org/10.3390/fishes3030033

    Article  Google Scholar 

  78. Lau H-T, Faryna J, Triplett EW (2006) Aquitalea magnusonii gen. nov., sp. nov., a novel Gram-negative bacterium isolated from a humic lake. Int. J. Syst. Evol. Microbiol. 56(4):867–871. https://doi.org/10.1099/ijs.0.64089-0

    Article  CAS  PubMed  Google Scholar 

  79. Pontes DS, Pinheiro FA, Lima-Bittencourt CI, Guedes RLM, Cursino L, Barbosa F, Santos FR, Chartone-Souza E, Nascimento AMA (2009) Multiple antimicrobial resistance of gram-negative bacteria from natural oligotrophic lakes under distinct anthropogenic influence in a tropical region. Microb. Ecol. 58(4):762–772. https://doi.org/10.1007/s00248-009-9539-3

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to extend a heartfelt thanks to all the staff of CARL for rendering technical assistance during the wet laboratory work. We sincerely thank to the staff of Blue Ridge Marron farm, Manjimup, Western Australia, for providing live marron.

Funding

First author sincerely acknowledges the joint financial support provided by the Curtin International Postgraduate Research Scholarship (CIPRS) (No. 18508848 – Curtin) and Ministry of Education and Training (MOET), Vietnam, in the form of doctoral program fellowship.

Author information

Authors and Affiliations

Authors

Contributions

TTTH and RF conceived and designed the experiment. TTH and MJF carried out the experiments and performed sample analyses. SKG, MABS and CYT assisted in the experimental design, statistical analysis and manuscript preparation. SKG, MJF and RF reviewed and edited the manuscript. RF approved the manuscript for submission and SKG submitted the study.

Corresponding authors

Correspondence to Md Javed Foysal or Sanjay Kumar Gupta.

Ethics declarations

Conflict of Interest

The authors declare that they no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, T.T.T., Foysal, M.J., Fotedar, R. et al. The Effect of Two Dietary Protein Sources on Water Quality and the Aquatic Microbial Communities in Marron (Cherax cainii) Culture. Microb Ecol 82, 299–308 (2021). https://doi.org/10.1007/s00248-021-01681-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-021-01681-3

Keywords

Navigation