Skip to main content

Advertisement

Log in

DDR1 and DDR2: a review on signaling pathway and small molecule inhibitors as an anticancer agent

  • Review Article
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Cancer is the 2nd most fatal disease around the globe. Various receptors have been showed to be overexpressed and/or mutated in numerous cancers. Discoidin domain receptors 1 (DDR1) and 2 (DDR2) are one of the novel receptor tyrosine kinases (RTKs), which have been proved to regulate various cellular signaling pathways, cell proliferation, adhesion, migration, matrix remodeling, and dysregulation of these receptors may lead to metastatic cancer progressions. These receptors belong to unique category of RTKs, which require collagen binding for its activation. Yet the mechanism of this extracellular collagen binding and activation of cytosolic kinase domain of the receptors is not clear. Like other RTKs, these receptors also showed its extensive implications in numerous cancers like lung, breast, ovarian, pancreatic cancer and many others. Therefore DDR1 and DDR2 emerge as potential therapeutic targets in preventing cancer. Various small molecule tyrosine kinase inhibitors have been developed against these two receptors and proved to be highly efficacious in reducing tumor progressions. This review would highlight the detailed structure, functions, mechanism of action, signaling pathways of DDR1 and DDR2, their roles in cancer developments and the inhibition of these receptors with numerous inhibitors can be a promising strategy to combat this hefty menace.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. World Health Organization. Cancer. 2018. https://www.who.int/news-room/fact-sheets/detail/cancer.

  2. Falzone L, Salomone S, Libra M. Evolution of cancer pharmacological treatments at the turn of the third millennium. Front Pharm. 2018;9:1300 https://doi.org/10.3389/fphar.2018.01300.

    Article  CAS  Google Scholar 

  3. Arruebo M, Vilaboa N, Sáez-Gutierrez B, Lambea J, Tres A, Valladares M, et al. Assessment of the evolution of cancer treatment therapies. Cancers. 2011;3:3279–330. https://doi.org/10.3390/cancers3033279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lemmon MA, Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell. 2010;141:1117–34. https://doi.org/10.1016/j.cell.2010.06.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lu P, Weaver VM, Werb Z. The extracellular matrix: a dynamic niche in cancer progression. J Cell Biol. 2012;196:395–406. https://doi.org/10.1083/jcb.201102147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Shrivastava A, Radziejewski C, Campbell E, Kovac L, McGlynn M, Ryan TE, et al. An orphan receptor tyrosine kinase family whose members serve as nonintegrin collagen receptors. Mol Cell. 1997;1:25–34. https://doi.org/10.1016/s1097-2765(00)80004-0.

    Article  CAS  PubMed  Google Scholar 

  7. Vogel W, Gish GD, Alves F, Pawson T. The discoidin domain receptor tyrosine kinases are activated by collagen. Mol Cell. 1997;1:13–23. https://doi.org/10.1016/s1097-2765(00)80003-9.

    Article  CAS  PubMed  Google Scholar 

  8. Kiedzierska A, Smietana K, Czepczynska H, Otlewski J. Structural similarities and functional diversity of eukaryotic discoidin-like domains. Biochim Biophys Acta. 2007;1774:1069–78. https://doi.org/10.1016/j.bbapap.2007.07.007.

    Article  CAS  PubMed  Google Scholar 

  9. Rammal H, Saby C, Magnien K, Van-Gulick L, Garnotel R, Buache E, et al. Discoidin domain receptors: potential actors and targets in cancer. Front Pharm. 2016;7:55. https://doi.org/10.3389/fphar.2016.00055.

    Article  CAS  Google Scholar 

  10. Johnson JD, Edman JC, Rutter WJ. A receptor tyrosine kinase found in breast carcinoma cells has an extracellular discoidin I-like domain. Proc Natl Acad Sci USA. 1993;90:5677–81. https://doi.org/10.1073/pnas.90.12.5677.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Alves F, Vogel W, Mossie K, Millauer B, Höfler H, Ullrich A. Distinct structural characteristics of discoidin I subfamily receptor tyrosine kinases and complementary expression in human cancer. Oncogene. 1995;10:609–18.

    CAS  PubMed  Google Scholar 

  12. Valiathan RR, Marco M, Leitinger B, Kleer CG, Fridman R. Discoidin domain receptor tyrosine kinases: new players in cancer progression. Cancer Metastasis Rev. 2012;31:295–321. https://doi.org/10.1007/s10555-012-9346-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Leitinger B. Molecular analysis of collagen binding by the human discoidin domain receptors, DDR1 and DDR2 identification of collagen binding sites in DDR2. J Biol Chem. 2003;278:16761–9. https://doi.org/10.1074/jbc.m301370200.

    Article  CAS  PubMed  Google Scholar 

  14. Hou G, Vogel W, Bendeck MP. The discoidin domain receptor tyrosine kinase DDR1 in arterial wound repair. J Clin Invest. 2001;107:727–35. https://doi.org/10.1172/jci10720.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Leitinger B, Steplewski A, Fertala A. The D2 period of collagen II contains a specific binding site for the human discoidin domain receptor, DDR2. J Mol Biol. 2004;344:993–1003. https://doi.org/10.1016/j.jmb.2004.09.089.

    Article  CAS  PubMed  Google Scholar 

  16. Leitinger B, Kwan AP. The discoidin domain receptor DDR2 is a receptor for type X collagen. Matrix Biol. 2006;25:355–64. https://doi.org/10.1016/j.matbio.2006.05.006.

    Article  CAS  PubMed  Google Scholar 

  17. Leitinger B. Transmembrane collagen receptors. Annu Rev Cell Dev Biol. 2011;27:265–90. https://doi.org/10.1146/annurev-cellbio-092910-154013.

    Article  CAS  PubMed  Google Scholar 

  18. Carafoli F, Hohenester E. Collagen recognition and transmembrane signalling by discoidin domain receptors. Biochim Biophys Acta. 2013;1834:2187–94. https://doi.org/10.1016/j.bbapap.2012.10.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Alves F, Saupe S, Ledwon M, Schaub F, Hiddemann W, Vogel W. Identification of two novel, kinase-deficient variants of discoidin domain receptor 1: differential expression in human colon cancer cell lines. FASEB J. 2001;15:1321–3. https://doi.org/10.1096/fj.00-0626fje.

    Article  CAS  PubMed  Google Scholar 

  20. Playford MP, Butler RJ, Wang XC, Katso RM, Cooke IE, Ganesan TS. The genomic structure of discoidin receptor tyrosine kinase. Genome Res. 1996;6:620–7. https://doi.org/10.1101/gr.6.7.620.

    Article  CAS  PubMed  Google Scholar 

  21. Dengjel J, Akimov V, Olsen JV, Bunkenborg J, Mann M, Blagoev B, et al. Quantitative proteomic assessment of very early cellular signaling events. Nat Biotechnol. 2007;25:566–8. https://doi.org/10.1038/nbt1301.

    Article  CAS  PubMed  Google Scholar 

  22. Gu TL, Deng X, Huang F, Tucker M, Crosby K, Rimkunas V, et al. Survey of tyrosine kinase signaling reveals ROS kinase fusions in human cholangiocarcinoma. PLoS ONE. 2011;6:e15640. https://doi.org/10.1371/journal.pone.0015640.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Farndale RW, Lisman T, Bihan D, Hamaia S, Smerling CS, Pugh N, et al. Cell–collagen interactions: the use of peptide Toolkits to investigate collagen–receptor interactions. Biochem Soc Trans. 2008;36:241–50. https://doi.org/10.1042/bst0360241.

    Article  CAS  PubMed  Google Scholar 

  24. Konitsiotis AD, Raynal N, Bihan D, Hohenester E, Farndale RW, Leitinger B. Characterization of high affinity binding motifs for the discoidin domain receptor DDR2 in collagen. J Biol Chem. 2008;283:6861–8. https://doi.org/10.1074/jbc.m709290200.

    Article  CAS  PubMed  Google Scholar 

  25. Xu H, Raynal N, Stathopoulos S, Myllyharju J, Farndale RW, Leitinger B. Collagen binding specificity of the discoidin domain receptors: binding sites on collagens II and III and molecular determinants for collagen IV recognition by DDR1. Matrix Biol. 2011;30:16–26. https://doi.org/10.1016/j.matbio.2010.10.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ichikawa O, Osawa M, Nishida N, Goshima N, Nomura N, Shimada I. Structural basis of the collagen-binding mode of discoidin domain receptor 2. EMBO J. 2007;26:4168–76. https://doi.org/10.1038/sj.emboj.7601833.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dejmek J, Dib K, Jönsson M, Andersson T. Wnt-5a and G-protein signaling are required for collagen-induced DDR1 receptor activation and normal mammary cell adhesion. Int J Cancer. 2003;103:344–51. https://doi.org/10.1002/ijc.10752.

    Article  CAS  PubMed  Google Scholar 

  28. Jönsson M, Andersson T. Repression of Wnt-5a impairs DDR1 phosphorylation and modifies adhesion and migration of mammary cells. J Cell Sci. 2001;114:2043–53.

    PubMed  Google Scholar 

  29. Kim HG, Hwang SY, Aaronson SA, Mandinova A, Lee SW. DDR1 receptor tyrosine kinase promotes prosurvival pathway through Notch1 activation. J Biol Chem. 2011;286:17672–81. https://doi.org/10.1074/jbc.m111.236612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Iwai LK, Chang F, Huang PH. Phosphoproteomic analysis identifies insulin enhancement of discoidin domain receptor 2 phosphorylation. Cell Adh Migr. 2013;7:161–4. https://doi.org/10.4161/cam.22572.

    Article  PubMed  Google Scholar 

  31. Lu KK, Trcka D, Bendeck MP. Collagen stimulates discoidin domain receptor 1-mediated migration of smooth muscle cells through Src. Cardiovasc Pathol. 2011;20:71–6. https://doi.org/10.1016/j.carpath.2009.12.006.

    Article  CAS  PubMed  Google Scholar 

  32. Ikeda K, Wang LH, Torres R, Zhao H, Olaso E, Eng FJ, et al. Discoidin domain receptor 2 interacts with Src and Shc following its activation by type I collagen. J Biol Chem. 2002;277:19206–12. https://doi.org/10.1074/jbc.m201078200.

    Article  CAS  PubMed  Google Scholar 

  33. Koo DH, McFadden C, Huang Y, Abdulhussein R, Friese-Hamim M, Vogel WF. Pinpointing phosphotyrosine-dependent interactions downstream of the collagen receptor DDR1. FEBS Lett. 2006;580:15–22. https://doi.org/10.1016/j.febslet.2005.11.035.

    Article  CAS  PubMed  Google Scholar 

  34. Wang CZ, Su HW, Hsu YC, Shen MR, Tang MJ. A discoidin domain receptor 1/SHP-2 signaling complex inhibits α2β1-integrin–mediated signal transducers and activators of transcription 1/3 activation and cell migration. Mol Biol Cell. 2006;17:2839–52. https://doi.org/10.1091/mbc.E05-11-1068.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yang G, Li Q, Ren S, Lu X, Fang L, Zhou W, et al. Proteomic, functional and motif-based analysis of C-terminal Src kinase-interacting proteins. Proteomics. 2009;9:4944–61. https://doi.org/10.1002/pmic.200800762.

    Article  CAS  PubMed  Google Scholar 

  36. Huang Y, Arora P, McCulloch CA, Vogel WF. The collagen receptor DDR1 regulates cell spreading and motility by associating with myosin IIA. J Cell Sci. 2009;122:1637–46. https://doi.org/10.1242/jcs.046219.

    Article  CAS  PubMed  Google Scholar 

  37. Shintani Y, Fukumoto Y, Chaika N, Svoboda R, Wheelock MJ, Johnson KR. Collagen I–mediated up-regulation of N-cadherin requires cooperative signals from integrins and discoidin domain receptor 1. J Cell Biol. 2008;180:1277–89. https://doi.org/10.1083/jcb.200708137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Das S, Ongusaha PP, Yang YS, Park JM, Aaronson SA, Lee SW. Discoidin domain receptor 1 receptor tyrosine kinase induces cyclooxygenase-2 and promotes chemoresistance through nuclear factor-κB pathway activation. Cancer Res. 2006;66:8123–30. https://doi.org/10.1158/0008-5472.can-06-1215.

    Article  CAS  PubMed  Google Scholar 

  39. Yeh YC, Wang CZ, Tang MJ. Discoidin domain receptor 1 activation suppresses α2β1 integrin-dependent cell spreading through inhibition of Cdc42 activity. J Cell Physiol. 2009;218:146–56. https://doi.org/10.1002/jcp.21578.

    Article  CAS  PubMed  Google Scholar 

  40. Su J, Yu J, Ren T, Zhang W, Zhang Y, Liu X, et al. Discoidin domain receptor 2 is associated with the increased expression of matrix metalloproteinase-13 in synovial fibroblasts of rheumatoid arthritis. Mol Cell Biochem. 2009;330:141–52. https://doi.org/10.1007/s11010-009-0127-0.

    Article  CAS  PubMed  Google Scholar 

  41. Lemeer S, Bluwstein A, Wu Z, Leberfinger J, Müller K, Kramer K, et al. Phosphotyrosine mediated protein interactions of the discoidin domain receptor 1. J Proteom. 2012;75:3465–77. https://doi.org/10.1016/j.jprot.2011.10.007.

    Article  CAS  Google Scholar 

  42. Ongusaha PP, Kim JI, Fang L, Wong TW, Yancopoulos GD, Aaronson SA, et al. p53 induction and activation of DDR1 kinase counteract p53-mediated apoptosis and influence p53 regulation through a positive feedback loop. EMBO J. 2003;22:1289–301. https://doi.org/10.1093/emboj/cdg129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Das S, Ongusaha PP, Yang YS, Park JM, Aaronson SA, Lee SW. Discoidin domain receptor 1 receptor tyrosine kinase induces cyclooxygenase-2 and promotes chemoresistance through nuclear factor-κB pathway activation. Cancer Res. 2006;66:8123–30. https://doi.org/10.1158/0008-5472.CAN-06-1215.

    Article  CAS  PubMed  Google Scholar 

  44. Payne LS, Huang PH. Discoidin domain receptor 2 signaling networks and therapy in lung cancer. J Thorac Oncol. 2014;9:900–4. https://doi.org/10.1097/JTO.0000000000000164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Iwai LK, Payne LS, Luczynski MT, Chang F, Xu H, Clinton RW, et al. Phosphoproteomics of collagen receptor networks reveals SHP-2 phosphorylation downstream of wild-type DDR2 and its lung cancer mutants. Biochem J. 2013;454:501–13. https://doi.org/10.1042/bj20121750.

    Article  CAS  PubMed  Google Scholar 

  46. Ford CE, Lau SK, Zhu CQ, Andersson T, Tsao MS, Vogel WF. Expression and mutation analysis of the discoidin domain receptors 1 and 2 in non-small cell lung carcinoma. Br J Cancer. 2007;96:808–14. https://doi.org/10.1038/sj.bjc.6603614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yang SH, Baek HA, Lee HJ, Park HS, Jang KY, Kang MJ, et al. Discoidin domain receptor 1 is associated with poor prognosis of non-small cell lung carcinomas. Oncol Rep. 2010;24:311–9. https://doi.org/10.3892/or_00000861.

    Article  CAS  PubMed  Google Scholar 

  48. Rikova K, Guo A, Zeng Q, Possemato A, Yu J, Haack H, et al. Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer. Cell. 2007;131:1190–203. https://doi.org/10.1016/j.cell.2007.11.025.

    Article  CAS  PubMed  Google Scholar 

  49. Ding L, Getz G, Wheeler DA, Mardis ER, McLellan MD, Cibulskis K, et al. Somatic mutations affect key pathways in lung adenocarcinoma. Nature. 2008;455:1069–75. https://doi.org/10.1038/nature07423.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Davies H, Hunter C, Smith R, Stephens P, Greenman C, Bignell G, et al. Somatic mutations of the protein kinase gene family in human lung cancer. Cancer Res. 2005;65:7591–5. https://doi.org/10.1158/0008-5472.can-05-1855.

    Article  CAS  PubMed  Google Scholar 

  51. Hammerman PS, Sos ML, Ramos AH, Xu C, Dutt A, Zhou W, et al. Mutations in the DDR2 kinase gene identify a novel therapeutic target in squamous cell lung cancer. Cancer Discov. 2011;1:78–89. https://doi.org/10.1158/2159-8274.cd-11-0005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Miao L, Wang Y, Zhu S, Shi M, Li Y, Ding J, et al. Identification of novel driver mutations of the discoidin domain receptor 2 (DDR2) gene in squamous cell lung cancer of Chinese patients. BMC Cancer. 2014;14:369 https://doi.org/10.1186/1471-2407-14-369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kobayashi-Watanabe N, Sato A, Watanabe T, Abe T, Nakashima C, Sueoka E, et al. Functional analysis of Discoidin domain receptor 2 mutation and expression in squamous cell lung cancer. Lung Cancer. 2017;110:35–41. https://doi.org/10.1016/j.lungcan.2017.05.017.

    Article  PubMed  Google Scholar 

  54. Turashvili G, Bouchal J, Baumforth K, Wei W, Dziechciarkova M, Ehrmann J, et al. Novel markers for differentiation of lobular and ductal invasive breast carcinomas by laser microdissection and microarray analysis. BMC Cancer. 2007;7:55. https://doi.org/10.1186/1471-2407-7-55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Turashvili G, Bouchal J, Ehrmann J, Fridman E, Skarda J, Kolara Z. Novel immunohistochemical markers for the differentiation of lobular and ductal invasive breast carcinomas. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2007;151:59–64. https://doi.org/10.5507/bp.2007.010.

    Article  CAS  PubMed  Google Scholar 

  56. Barker KT, Martindale JE, Mitchell PJ, Kamalati T, Page MJ, Phippard DJ, et al. Expression patterns of the novel receptor-like tyrosine kinase, DDR, in human breast tumours. Oncogene. 1995;10:569–75.

    CAS  PubMed  Google Scholar 

  57. Neuhaus B, Bühren S, Böck B, Alves F, Vogel WF, Kiefer F. Migration inhibition of mammary epithelial cells by Syk is blocked in the presence of DDR1 receptors. Cell Mol Life Sci. 2011;68:3757–70. https://doi.org/10.1007/s00018-011-0676-8.

    Article  CAS  PubMed  Google Scholar 

  58. Zhang K, Corsa CA, Ponik SM, Prior JL, Piwnica-Worms D, Eliceiri KW, et al. The collagen receptor discoidin domain receptor 2 stabilizes SNAIL1 to facilitate breast cancer metastasis. Nat Cell Biol. 2013;15:677–87. https://doi.org/10.1038/ncb2743.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ren T, Zhang W, Liu X, Zhao H, Zhang J, Zhang J, et al. Discoidin domain receptor 2 (DDR2) promotes breast cancer cell metastasis and the mechanism implicates epithelial–mesenchymal transition programme under hypoxia. J Pathol. 2014;234:526–37. https://doi.org/10.1002/path.4415.

    Article  CAS  PubMed  Google Scholar 

  60. Heinzelmann-Schwarz VA, Gardiner-Garden M, Henshall SM, Scurry J, Scolyer RA, Davies MJ, et al. Overexpression of the cell adhesion molecules DDR1, Claudin 3, and Ep-CAM in metaplastic ovarian epithelium and ovarian cancer. Clin Cancer Res. 2004;10:4427–36. https://doi.org/10.1158/1078-0432.ccr-04-0073.

    Article  CAS  PubMed  Google Scholar 

  61. Quan J, Yahata T, Adachi S, Yoshihara K, Tanaka K. Identification of receptor tyrosine kinase, discoidin domain receptor 1 (DDR1), as a potential biomarker for serous ovarian cancer. Int J Mol Sci. 2011;12:971–82. https://doi.org/10.3390/ijms12020971.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Colas E, Perez C, Cabrera S, Pedrola N, Monge M, Castellvi J, et al. Molecular markers of endometrial carcinoma detected in uterine aspirates. Int J Cancer. 2011;129:2435–44. https://doi.org/10.1002/ijc.25901.

    Article  CAS  PubMed  Google Scholar 

  63. Shen Q, Cicinnati VR, Zhang X, Iacob S, Weber F, Sotiropoulos GC, et al. Role of microRNA-199a-5p and discoidin domain receptor 1 in human hepatocellular carcinoma invasion. Mol Cancer. 2010;9:227. https://doi.org/10.1186/1476-4598-9-227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Couvelard A, Hu J, Steers G, Dermot OT, Sauvanet A, Belghiti J, et al. Identification of potential therapeutic targets by gene-expression profiling in pancreatic endocrine tumors. Gastroenterology. 2006;131:1597–610. https://doi.org/10.1053/j.gastro.2006.09.007.

    Article  CAS  PubMed  Google Scholar 

  65. Weiner HL, Huang H, Zagzag D, Boyce H, Lichtenbaum R, Ziff EB. Consistent and selective expression of the discoidin domain receptor-1 tyrosine kinase in human brain tumors. Neurosurgery. 2000;47:1400–9.

    Article  CAS  PubMed  Google Scholar 

  66. Shimada K, Nakamura M, Ishida E, Higuchi T, Yamamoto H, Tsujikawa K, et al. Prostate cancer antigen-1 contributes to cell survival and invasion though discoidin receptor 1 in human prostate cancer. Cancer Sci. 2008;99:39–45. https://doi.org/10.1111/j.1349-7006.2007.00655.x.

    Article  CAS  PubMed  Google Scholar 

  67. Hidalgo-Carcedo C, Hooper S, Chaudhry SI, Williamson P, Harrington K, Leitinger B, et al. Collective cell migration requires suppression of actomyosin at cell–cell contacts mediated by DDR1 and the cell polarity regulators Par3 and Par6. Nat Cell Biol. 2011;13:49–59. https://doi.org/10.1038/ncb2133.

    Article  CAS  PubMed  Google Scholar 

  68. Nemoto T, Ohashi K, Akashi T, Johnson JD, Hirokawa K. Overexpression of protein tyrosine kinases in human esophageal cancer. Pathobiology. 1997;65:195–203. https://doi.org/10.1159/000164123.

    Article  CAS  PubMed  Google Scholar 

  69. Chua HH, Yeh TH, Wang YP, Huang YT, Sheen TS, Lo YC, et al. Upregulation of discoidin domain receptor 2 in nasopharyngeal carcinoma. Head Neck-J Sci Spec. 2008;30:427–36. https://doi.org/10.1002/hed.20724.

    Article  Google Scholar 

  70. Rodrigues R, Roque L, Espadinha C, Pinto A, Domingues R, Dinis J, et al. Comparative genomic hybridization, BRAF, RAS, RET, and oligo-array analysis in aneuploid papillary thyroid carcinomas. Oncol Rep. 2007;18:917–26.

    CAS  PubMed  Google Scholar 

  71. Renné C, Willenbrock K, Ku¨ppers R, Hansmann ML, Bra¨uninger A. Autocrine-and paracrine-activated receptor tyrosine kinases in classic Hodgkin lymphoma. Blood. 2005;105:4051–9. https://doi.org/10.1182/blood-2004-10-4008.

    Article  CAS  PubMed  Google Scholar 

  72. von Mässenhausen A, Sanders C, Brägelmann J, Konantz M, Queisser A, Vogel W, et al. Targeting DDR2 in head and neck squamous cell carcinoma with dasatinib. Int J Cancer. 2016;139:2359–69. https://doi.org/10.1002/ijc.30279.

    Article  CAS  Google Scholar 

  73. Tomasson MH, Xiang Z, Walgren R, Zhao Y, Kasai Y, Miner T, et al. Somatic mutations and germline sequence variants in the expressed tyrosine kinase genes of patients with de novo acute myeloid leukemia. Blood. 2008;111:4797–808. https://doi.org/10.1182/blood-2007-09-113027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Loriaux MM, Levine RL, Tyner JW, Fröhling S, Scholl C, Stoffregen EP, et al. High-throughput sequence analysis of the tyrosine kinome in acute myeloid leukemia. Blood. 2008;111:4788–96. https://doi.org/10.1182/blood-2007-07-101394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Siddiqui K, Kim GW, Lee DH, Shin HR, Yang EG, Lee NT, et al. Actinomycin D identified as an inhibitor of discoidin domain receptor 2 interaction with collagen through an insect cell based screening of a drug compound library. Biol Pharm Bull. 2009;32:136–41. https://doi.org/10.1248/bpb.32.136.

    Article  CAS  PubMed  Google Scholar 

  76. Carafoli F, Mayer MC, Shiraishi K, Pecheva MA, Chan LY, Nan R, et al. Structure of the discoidin domain receptor 1 extracellular region bound to an inhibitory Fab fragment reveals features important for signaling. Structure. 2012;20:688–97. https://doi.org/10.1016/j.str.2012.02.011.

    Article  CAS  PubMed  Google Scholar 

  77. Ram R, Lorente G, Nikolich K, Urfer R, Foehr E, Nagavarapu U. Discoidin domain receptor-1a (DDR1a) promotes glioma cell invasion and adhesion in association with matrix metalloproteinase-2. J Neurooncol. 2006;76:239–48. https://doi.org/10.1007/s11060-005-6874-1.

    Article  CAS  PubMed  Google Scholar 

  78. Castro-Sanchez L, Soto-Guzman A, Navarro-Tito N, Martinez-Orozco R, Salazar EP. Native type IV collagen induces cell migration through a CD9 and DDR1-dependent pathway in MDA-MB-231 breast cancer cells. Eur J Cell Biol. 2010;89:843–52. https://doi.org/10.1016/j.ejcb.2010.07.004.

    Article  CAS  PubMed  Google Scholar 

  79. Zhang J, Yang PL, Gray NS. Targeting cancer with small molecule kinase inhibitors. Nat Rev Cancer. 2009;9:28–39. https://doi.org/10.1038/nrc2559.

    Article  CAS  PubMed  Google Scholar 

  80. Modi V, Dunbrack RL. Clustering of the structures of protein kinase activation loops: a new nomenclature for active and inactive kinase structures. 2018:395723. https://doi.org/10.1101/395723.

  81. Hanson SM, Georghiou G, Thakur MK, Miller WT, Rest JS, Chodera JD, et al. What makes a kinase promiscuous for inhibitors? Cell Chem Biol. 2019;26:390–99. https://doi.org/10.1016/j.chembiol.2018.11.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Day E, Waters B, Spiegel K, Alnadaf T, Manley PW, Buchdunger E, et al. Inhibition of collagen-induced discoidin domain receptor 1 and 2 activation by imatinib, nilotinib and dasatinib. Eur J Pharm. 2008;599:44–53. https://doi.org/10.1016/j.ejphar.2008.10.014.

    Article  CAS  Google Scholar 

  83. Safran H, Dipetrillo T, Khurshid H, Ng T, Mantripragada K, Birnbaum A, et al. A phase I study of dasatinib with concurrent chemoradiation for stage III non-small cell lung cancer. Front Oncol. 2012;2:56. https://doi.org/10.3389/fonc.2012.00056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Brunner AM, Costa DB, Heist RS, Garcia E, Lindeman NI, Sholl LM, et al. Treatment-related toxicities in a phase II trial of dasatinib in patients with squamous cell carcinoma of the lung. J Thorac Oncol. 2013;8:1434–7. https://doi.org/10.1097/jto.0b013e3182a47162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Canning P, Tan L, Chu K, Lee SW, Gray NS, Bullock AN, et al. Structural mechanisms determining inhibition of the collagen receptor DDR1 by selective and multi-targeted type II kinase inhibitors. J Mol Biol. 2014;426:2457–70. https://doi.org/10.1016/j.jmb.2014.04.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Rix U, Rix LR, Terker AS, Fernbach NV, Hantschel O, Planyavsky M, et al. A comprehensive target selectivity survey of the BCR-ABL kinase inhibitor INNO-406 by kinase profiling and chemical proteomics in chronic myeloid leukemia cells. Leukemia. 2010;24:44–50. https://doi.org/10.1038/leu.2009.228.

    Article  CAS  PubMed  Google Scholar 

  87. Sun X, Phan TN, Jung SH, Kim SY, Cho JU, Lee H, et al. LCB 03-0110, a novel pan-discoidin domain receptor/c-Src family tyrosine kinase inhibitor, suppresses scar formation by inhibiting fibroblast and macrophage activation. J Pharm Exp Ther. 2012;340:510–19. https://doi.org/10.1124/jpet.111.187328.

    Article  CAS  Google Scholar 

  88. Liu L, Hussain M, Luo J, Duan A, Chen C, Tu Z, et al. Synthesis and biological evaluation of novel dasatinib analogues as potent DDR 1 and DDR 2 kinase inhibitors. Chem Biol Drug Des. 2017;89:420–27. https://doi.org/10.1111/cbdd.12863.

    Article  CAS  PubMed  Google Scholar 

  89. Wang Z, Zhang Y, Pinkas DM, Fox AE, Luo J, Huang H, et al. Design, synthesis, and biological evaluation of 3-(Imidazo [1, 2-a] pyrazin-3-ylethynyl)-4-isopropyl-N-(3-((4-methylpiperazin-1-yl) methyl)-5-(trifluoromethyl) phenyl) benzamide as a dual inhibitor of discoidin domain receptors 1 and 2. J Med Chem. 2018;61:7977–90. https://doi.org/10.1021/acs.jmedchem.8b01045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Gao M, Duan L, Luo J, Zhang L, Lu X, Zhang Y, et al. Discovery and optimization of 3-(2-(Pyrazolo [1, 5-a] pyrimidin-6-yl) ethynyl) benzamides as novel selective and orally bioavailable discoidin domain receptor 1 (DDR1) inhibitors. J Med Chem. 2013;56:3281–95. https://doi.org/10.1021/jm301824k.

    Article  CAS  PubMed  Google Scholar 

  91. Kim HG, Tan L, Weisberg EL, Liu F, Canning P, Choi HG, et al. Discovery of a potent and selective DDR1 receptor tyrosine kinase inhibitor. ACS Chem Biol. 2013;8:2145–50. https://doi.org/10.1021/cb400430t.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Richters A, Nguyen HD, Phan T, Simard JR, Gru¨tter C, Engel J, et al. Identification of type II and III DDR2 inhibitors. J Med Chem. 2014;57:4252–62. https://doi.org/10.1021/jm500167q.

    Article  CAS  PubMed  Google Scholar 

  93. Terai H, Tan L, Beauchamp EM, Hatcher JM, Liu Q, Meyerson M, et al. Characterization of DDR2 inhibitors for the treatment of DDR2 mutated nonsmall cell lung cancer. ACS Chem Biol. 2015;10:2687–96. https://doi.org/10.1021/acschembio.5b00655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Wang Z, Bian H, Bartual SG, Du W, Luo J, Zhao H, et al. Structure-based design of tetrahydroisoquinoline-7-carboxamides as selective discoidin domain receptor 1 (DDR1) inhibitors. J Med Chem. 2016;59:5911–16. https://doi.org/10.1021/acs.jmedchem.6b00140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Wang Z, Zhang Y, Bartual SG, Luo J, Xu T, Du W, et al. Tetrahydroisoquinoline-7-carboxamide derivatives as new selective discoidin domain receptor 1 (DDR1) inhibitors. ACS Med Chem Lett. 2017;8:327–32. https://doi.org/10.1021/acsmedchemlett.6b00497.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Wang Q, Dai Y, Ji Y, Shi H, Guo Z, Chen D, et al. Discovery and optimization of a series of 3-substituted indazole derivatives as multi-target kinase inhibitors for the treatment of lung squamous cell carcinoma. Eur J Med Chem. 2019;163:671–89. https://doi.org/10.1016/j.ejmech.2018.12.015.

    Article  CAS  PubMed  Google Scholar 

  97. Zhu D, Huang H, Pinkas DM, Luo J, Ganguly D, Fox AE, et al. 2-Amino-2,3-dihydro-1 H-indene-5-carboxamide-based discoidin domain receptor 1 (DDR1) inhibitors: design, synthesis, and in vivo antipancreatic cancer efficacy. J Med Chem. 2019;62:7431–44. https://doi.org/10.1021/acs.jmedchem.9b00365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Mo C, Zhang Z, Li Y, Huang M, Zou J, Luo J, et al. Design and optimization of 3’-(imidazo [1, 2-a] pyrazin-3-yl)-[1, 1’-biphenyl]-3-carboxamides as selective DDR1 inhibitors. ACS Med Chem Lett. 2020. https://doi.org/10.1021/acsmedchemlett.9b00495.

  99. Murray CW, Berdini V, Buck IM, Carr ME, Cleasby A, Coyle JE, et al. Fragment-based discovery of potent and selective DDR1/2 inhibitors. ACS Med Chem Lett. 2015;6:798–803. https://doi.org/10.1021/acsmedchemlett.5b00143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Richter H, Satz AL, Bedoucha M, Buettelmann B, Petersen AC, Harmeier A, et al. DNA-encoded library-derived DDR1 inhibitor prevents fibrosis and renal function loss in a genetic mouse model of Alport syndrome. ACS Chem Biol. 2018;14:37–49. https://doi.org/10.1021/acschembio.8b00866.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Carafoli F, Bihan D, Stathopoulos S, Konitsiotis AD, Kvansakul M, Farndale RW, et al. Crystallographic insight into collagen recognition by discoidin domain receptor 2. Structure. 2009;17:1573–81. https://doi.org/10.1016/j.str.2009.10.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors declare their deep and sincere gratitude to the Principal, faculty staffs, management and all the members of Pharmaceutical Chemistry Department of Acharya & BM Reddy College of Pharmacy, Bengaluru, Karnataka, India, for their widest support in successful accomplishment of this review work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gurubasavaraja Swamy Purawarga Matada.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matada, G.S.P., Das, A., Dhiwar, P.S. et al. DDR1 and DDR2: a review on signaling pathway and small molecule inhibitors as an anticancer agent. Med Chem Res 30, 535–551 (2021). https://doi.org/10.1007/s00044-020-02694-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-020-02694-2

Keywords

Navigation