Skip to main content
Log in

Segre nondegenerate totally real subvarieties

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We study an irreducible real-analytic germ of an n-dimensional variety in n dimensional complex space. Assuming that the variety is Segre nondegenerate we define an averaging operator that generalizes the Moser–Webster involution. This operator can be thought of as being the CR structure of the singularity, and using this operator we study the set of functions that are restrictions of holomorphic functions. We give a condition on the flattening of the singularity, that is realizing the singularity as a codimention one subvariety of a nonsingular Levi-flat hypersurface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahern, P., Gong, X.: Real analytic manifolds in \({\mathbb{C}}^n\) with parabolic complex tangents along a submanifold of codimension one. Ann. Fac. Sci. Toulouse Math. (6) 18(1), 1–64 (2009)

    Article  MathSciNet  Google Scholar 

  2. Bishop, E.: Differentiable manifolds in complex Euclidean space. Duke Math. J. 32, 1–21 (1965). http://projecteuclid.org/euclid.dmj/1077375631

  3. Coffman, A.: Unfolding CR singularities. Mem. Am. Math. Soc. 205(962), viii+90 (2010). https://doi.org/10.1090/S0065-9266-09-00575-4

  4. Gong, X., Stolovitch, L.: Real submanifolds of maximum complex tangent space at a CR singular point. I. Invent. Math. 206(2), 293–377 (2016). https://doi.org/10.1007/s00222-016-0654-8

    Article  MathSciNet  MATH  Google Scholar 

  5. Gong, X., Stolovitch, L.: Real submanifolds of maximum complex tangent space at a CR singular point. II. J. Differ. Geom. 112(1), 121–198 (2019). https://doi.org/10.4310/jdg/1557281008

    Article  MathSciNet  MATH  Google Scholar 

  6. Gong, X.H.: On the convergence of normalizations of real analytic surfaces near hyperbolic complex tangents. Comment. Math. Helv. 69(4), 549–574 (1994). https://doi.org/10.1007/BF02564504

    Article  MathSciNet  MATH  Google Scholar 

  7. Harris, G.A.: The traces of holomorphic functions on real submanifolds. Trans. Am. Math. Soc. 242, 205–223 (1978). https://doi.org/10.2307/1997733

    Article  MathSciNet  MATH  Google Scholar 

  8. Harris, G.A.: Lowest order invariants for real-analytic surfaces in \( {C}^2\). Trans. Am. Math. Soc. 288(1), 413–422 (1985). https://doi.org/10.2307/2000447

    Article  MATH  Google Scholar 

  9. Huang, X.: On an \(n\)-manifold in \( {C}^n\) near an elliptic complex tangent. J. Am. Math. Soc. 11(3), 669–692 (1998). https://doi.org/10.1090/S0894-0347-98-00265-3

    Article  MATH  Google Scholar 

  10. Huang, X.: Geometric and analytic problems for a real submanifold in \(\mathbb{C}^n\) with CR singularities. Sci. China Math. 60(6), 995–1004 (2017). https://doi.org/10.1007/s11425-016-9002-6

    Article  MathSciNet  MATH  Google Scholar 

  11. Huang, X., Yin, W.: A Bishop surface with a vanishing Bishop invariant. Invent. Math. 176(3), 461–520 (2009). https://doi.org/10.1007/s00222-008-0167-1

    Article  MathSciNet  MATH  Google Scholar 

  12. Huang, X.J., Krantz, S.G.: On a problem of Moser. Duke Math. J. 78(1), 213–228 (1995). https://doi.org/10.1215/S0012-7094-95-07809-0

    Article  MathSciNet  MATH  Google Scholar 

  13. Kenig, C.E., Webster, S.M.: The local hull of holomorphy of a surface in the space of two complex variables. Invent. Math. 67(1), 1–21 (1982). https://doi.org/10.1007/BF01393370

    Article  MathSciNet  MATH  Google Scholar 

  14. Kenig, C.E., Webster, S.M.: On the hull of holomorphy of an \(n\)-manifold in \({ C} ^n\). Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 11(2), 261–280 (1984)

    MathSciNet  MATH  Google Scholar 

  15. Lebl, J., Noell, A., Ravisankar, S.: Extension of CR functions from boundaries in \({\mathbb{C}}^n\times {\mathbb{R}}\). Indiana Univ. Math. J. 66(3), 901–925 (2017). https://doi.org/10.1512/iumj.2017.66.6067

    Article  MathSciNet  MATH  Google Scholar 

  16. Macdonald, I.G.: Symmetric functions and Hall polynomials. Oxford classic texts in the physical sciences, 2nd edn. The Clarendon Press, Oxford University Press, New York (2015) [With contribution by A. V. Zelevinsky and a foreword by Richard Stanley, Reprint of the 2008 paperback edition (MR1354144)]

  17. Moser, J.: Analytic surfaces in \({ C}^2\) and their local hull of holomorphy. Ann. Acad. Sci. Fenn. Ser. A I Math. 10, 397–410 (1985). https://doi.org/10.5186/aasfm.1985.1044

    Article  MathSciNet  MATH  Google Scholar 

  18. Moser, J.K., Webster, S.M.: Normal forms for real surfaces in \({ C} ^{2}\) near complex tangents and hyperbolic surface transformations. Acta Math. 150(3–4), 255–296 (1983). https://doi.org/10.1007/BF02392973

    Article  MathSciNet  MATH  Google Scholar 

  19. Webster, S.M.: The Euler and Pontrjagin numbers of an \(n\)-manifold in \( {C}^n\). Comment. Math. Helv. 60(2), 193–216 (1985). https://doi.org/10.1007/BF02567410

    Article  MathSciNet  MATH  Google Scholar 

  20. Whitney, H.: Complex analytic varieties. Addison-Wesley Publishing Co., Reading, London, Don Mills (1972)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard Lamel.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lamel, B., Lebl, J. Segre nondegenerate totally real subvarieties. Math. Z. 299, 163–181 (2021). https://doi.org/10.1007/s00209-020-02659-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-020-02659-6

Keywords

Mathematics Subject Classification

Navigation