Skip to main content
Log in

p-adic étale cohomology of period domains

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We compute the p-torsion and p-adic étale cohomologies with compact support of period domains over local fields in the case of basic isocrystals for quasi-split reductive groups. As in the cases of \(\ell \)-torsion or \(\ell \)-adic coefficients, \(\ell \ne p\), considered by Orlik, the results involve generalized Steinberg representations. For the p-torsion case, we follow the method used by Orlik in his computations of the \(\ell \)-torsion étale cohomology using as a key new ingredient the computation of \({\text {Ext}} \) groups between mod p generalized Steinberg representations of p-adic groups. For the p-adic case, we do not use Huber’s definition of étale cohomology with compact support as Orlik did since it seems to give spaces that are much too big; instead we use continuous étale cohomology with compact support.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Notes

  1. See [57, Sec. 3] for a list of such properties.

  2. The Euler characteristic of period domains was known before, thanks to Kottwitz and Rapoport, see [17] for a beautiful presentation.

  3. In both cases this continuous compactly supported cohomology coincides with the naive one.

  4. For example, the rational p-adic pro-étale cohomology of an open ball has a simple description in terms of differential forms [14], but the integrality conditions coming from the p-adic étale cohomology make the computations subtler.

  5. \(\breve{ {\mathbf{Q}}}_p\) is the completion of the maximal unramified extension of \( {\mathbf{Q}}_p\) in C.

  6. For the main result of the paper it would be enough to assume that [b] belongs to the larger set \(A(G,\mu )\), since all we need is that the period domain is nonempty, which is equivalent to \([b]\in A(G,\mu )\) by a result of Fontaine and Rapoport [25].

  7. If G is quasi-split over \( {\mathbf{Q}}_p\), which will be the case in our main result, we can choose \(\mu \in \{\mu \}\) defined over E and then \(\mathscr {F}=\mathscr {F}(G, \{\mu \})\) is the quotient of \(G_E\) by the parabolic subgroup \(P(\mu )\) associated to \(\mu \).

  8. The hypothesis that b is decent is harmless, since any \(\sigma \)-conjugacy class in \(G(\breve{ {\mathbf{Q}}}_p)\) contains an s-decent element for some positive integer \(s\ge 1\).

  9. See [51, Sec. 1] for the definition.

  10. Instead of requiring a proper support for a compatible sequence of global sections we just take sequences of properly supported global sections.

  11. We simplify for the sake of the introduction; see Sect. 6.2.1 for details.

  12. In the case \(I = \varnothing \) we have \(\varvec{P}_I = \varvec{B}\), \(\varvec{M}_I = \varvec{\mathcal {Z}}\), \(\varvec{N}_I = \varvec{U}\), \(\varvec{B}_I = \varvec{\mathcal {Z}}\), \(\varvec{U}_I = 1\), and \(\varvec{Z}_I = \varvec{Z}_{\varvec{\mathcal {Z}}}\). In the case \(I = \Delta \) we have \(\varvec{P}_I = \varvec{G}\), \(\varvec{M}_I = \varvec{G}\), \(\varvec{N}_I = 1\), \(\varvec{B}_I = \varvec{B}\), \(\varvec{U}_I = \varvec{U}\), and \(\varvec{Z}_I = \varvec{Z}_{\varvec{G}}\).

  13. Indeed: if \(p \ge 5\) then \(\bar{\varepsilon }\circ \alpha \circ \alpha ^\vee = \bar{\varepsilon }^2 \ne 1\); if \(p = 3\) and \(\alpha \notin 2X^*(\varvec{S})\) then there exists \(\omega _\alpha \in X_*(\varvec{S})\) such that \(\langle \alpha , \omega _\alpha \rangle = 1\) hence \(\bar{\varepsilon }\circ \alpha \circ \omega _\alpha = \bar{\varepsilon }\ne 1\); if \(p = 3\) and \(\alpha \in 2X^*(\varvec{S})\) then \(\bar{\varepsilon }\circ \alpha = \bar{\varepsilon }^2 \circ (\frac{1}{2} \alpha ) = 1\); if \(p = 2\) then \(\bar{\varepsilon }= 1\).

  14. In loc. cit. \(\varvec{G}\) is split but the results extend verbatim to any \(\varvec{G}\).

  15. In loc. cit. \(\varvec{G}\) is split but the results extend to any \(\varvec{G}\) if one replaces \(\ell (w)\) by \(\dim (\varvec{\overline{U}}/ \varvec{\overline{U}}_w)\). Alternatively, these results can be recovered from [31, Th. 3.3.3].

  16. A function \(f \in \mathrm {LC}(\overline{U})\) is uniformly locally constant if and only if the action of \(\overline{U}\) on f is smooth, but, contrary to what is claimed in [20, Sec. A.2], the action of \(\mathcal {Z}\) on such a function is not necessarily smooth.

  17. Here and below, to simplify the notation, we will write \(H^1(\breve{F}, G)\) etc. for the Galois cohomology \(H^1({\mathscr {G}}_{\breve{F}}, G(\overline{\breve{F}}))\).

  18. G-isocrystals can be defined for any linear algebraic group G over F. In that case one adds an assumption that the defining functor is strictly compatible with the fiber functors. If the group G is connected, as it is the case in this paper, this assumption is not necessary by the vanishing theorem of Steinberg [17, Lemma 9.1.5].

  19. Despite its innocuous-looking character, this is one of the most difficult results in the book of Fargues and Fontaine [24].

  20. There is a natural equivalence between the category of G-bundles on X and the category of G-torsors on X locally trivial for the étale topology: if Y is G-torsor étale locally trivial, we obtain a G-bundle by sending \((V,\rho )\in \mathrm{Rep}_F(G)\) to \(Y\times _{G,\rho } V\); conversely, each G-bundle \(\omega \) yields a locally trivial G-torsor \(\mathrm{Isom}^{\otimes }(\omega _\mathrm{can},\omega )\), where \(\omega _\mathrm{can}(V,\rho )=V\otimes _F \mathscr {O}_X\).

  21. Cf. Example 3.1 for the isomorphism in the displayed formula.

  22. Kottwitz formulated his theorem in [42, 43] in terms of the center \(Z(\widehat{G})\) of the Langlands dual group. The formulation we present here in terms of the algebraic fundamental group is due to Rapoport–Richartz [58]. It has better functoriality properties than the original one.

  23. This uses the deep fact that semistable vector bundles on X are stable under tensor product.

  24. The exactness condition is imposed so that filtrations can be described using gradings.

  25. Recall that E is simply the field of definition of \(\{\mu \}\), a finite extension of F.

  26. This stratification shares many properties with the Harder–Narasimhan stratification of the space of vector bundles over a Riemann surface.

  27. That is, such that the maps \(\mathrm{Int}(g): X_*(T)_{ {\mathbf{Q}}}\rightarrow X_*(gTg^{-1})_{ {\mathbf{Q}}}\) and \(\tau : X_*(T)_{ {\mathbf{Q}}}\rightarrow X_*(^{\tau }T)_{ {\mathbf{Q}}}\), \(^{\tau }T=\tau T\tau ^{-1}\), induced by any \(g\in G(\bar{k})\) and \(\tau \in {\mathscr {G}}_k\) are isometries.

  28. Explicitly, pick a Borel subgroup \(B_0\) of G defined over \(\bar{k}\) and containing \(T_0\); if \(\tau \in {\mathscr {G}}_k\), one can find \(g\in G(\bar{k})\), unique up to left translation by \(T_0(\bar{k})\), such that \(g^{\tau }T_0g^{-1}=T_0\) and \(g^{\tau }B_0g^{-1}=B_0\), and then \(\mathrm{Int}(g) \sigma \) is an automorphism of \(X_*(T_0)\) independent of the choice of g and \(B_0\) and this defines the L-action.

  29. We have \(P^J(\omega _{\alpha })(\overline{ {\mathbf{Q}}}_p)=P(\omega _{\alpha })(\overline{ {\mathbf{Q}}}_p)\cap J(\overline{ {\mathbf{Q}}}_p)\).

  30. The definition makes sense since \(P_I( {\mathbf{Q}}_p)\) preserves \(Y_I\).

  31. We refer the reader to the appendix for the formalism of pseudo-adic spaces, due to Huber [36].

  32. Recall that the hypothesis that b is decent is harmless, since any \(\sigma \)-conjugacy class in \(G(\breve{ {\mathbf{Q}}}_p)\) contains a decent element.

  33. By the definition of a local Shtuka datum!

  34. Note that A is necessarily finite since \(X_I\) is compact.

  35. Check [17, Ch. XI] for a “geometric” construction of this complex.

  36. Recall that the complexes \(C_I( {\mathbf{Z}} /p^n)\) are defined in Proposition 6.1.

References

  1. Abe, N., Henniart, G., Herzig, F., Vignéras, M.-F.: A classification of irreducible admissible mod \(p\) representations of \(p\)-adic reductive groups. J. Am. Math. Soc. 30(2), 495–559 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  2. Abe, N., Henniart, G., Vignéras, M.-F.: Modulo \(p\) representations of reductive \(p\)-adic groups: Functorial properties. Trans. Am. Math. Soc. 371(12), 8297–8337 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  3. André, Y.: Period Mappings and Differential Equations. From \(\mathbb{C}\) to \(\mathbb{C}_p\). Tôhoku-Hokkaidô Lectures in Arithmetic Geometry. With Appendices by F. Kato and N. Tsuzuki. MSJ Memoirs, vol. 12. Mathematical Society of Japan, Tokyo (2003)

    Google Scholar 

  4. Bhatt, B., Morrow, M., Scholze, P.: Integral \(p\)-adic Hodge theory. Publ. Math. Inst. Hautes Études Sci. 128, 219–397 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bhatt, B., Morrow, M., Scholze, P.: Topological Hochschild homology and integral \(p\)-adic Hodge theory. Publ. Math. Inst. Hautes Études Sci. 129, 199–310 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  6. Berkovich, V.: Vanishing cycles for formal schemes. Invent. Math. 115(3), 539–571 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  7. Borovoi, M.: Abelian Galois cohomology of reductive groups. Mem. Am. Math. Soc. 132, 626 (1998)

    MathSciNet  MATH  Google Scholar 

  8. Bruhat, F., Tits, J.: Groupes algébriques sur un corps local. Chapitre III. Compléments et applications à la cohomologie galoisienne. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 34(3), 671–698 (1987)

    MathSciNet  MATH  Google Scholar 

  9. Česnavičius, K., Koshikawa, T.: The \(A_{{\rm inf}}\)-cohomology in the semistable case. Compos. Math. 155(11), 2039–2128 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen, M., Fargues, L., Shen, X.: On the structure of some \(p\)-adic period domains. arXiv:1710.06935 [math.AG]

  11. Colmez, P.: Représentations de \({{\rm GL}}_2(\mathbf{Q}_p)\) et \((\varphi,\Gamma )\)-modules. Astérisque 330, 281–509 (2010)

    Google Scholar 

  12. Colmez, P., Dospinescu, G., Nizioł, W.: Cohomology of \(p\)-adic Stein spaces. Invent. Math. 219, 873–985 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  13. Colmez, P., Dospinescu, G., Nizioł, W.: Integral \(p\)-adic étale cohomology of Drinfeld symmetric spaces. arXiv:1905.11495 [math.AG] (to appear in Duke Math. J. )

  14. Colmez, P., Nizioł, W.: On the Cohomology of the Affine Space, in \(p\)-Adic Hodge Theory, Simons Symposia, pp. 71–80. Springer, Berlin (2020)

    MATH  Google Scholar 

  15. Curtis, C., Lehrer, G., Tits, J.: Spherical buildings and the character of the Steinberg representation. Invent. Math. 58, 201–210 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dat, J.-F.: Espaces symétriques de Drinfeld et correspondance de Langlands locale. Ann. Scient. Éc. Norm. Sup. 39(1), 1–74 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Dat, J.-F., Orlik, S., Rapoport, M.: Period Domains Over Finite and \(p\)-Adic Fields. Cambridge Tracts in Mathematics, vol. 183. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  18. Ding, Y.: Simple \(\mathscr {L}\)-invariants for \(\rm GL_n\). Trans. Am. Math. Soc. 372(11), 7993–8042 (2019)

    Article  MATH  Google Scholar 

  19. Emerton, M.: Ordinary parts of admissible representations of \(p\)-adic reductive groups I. Definition and first properties. Astérisque 331, 355–402 (2010)

    MathSciNet  MATH  Google Scholar 

  20. Emerton, M.: Ordinary parts of admissible representations of \(p\)-adic reductive groups II. Derived functors. Astérisque 331, 403–459 (2010)

    MathSciNet  MATH  Google Scholar 

  21. Faltings, G.: Mumford-Stabilität in der algebraischen Geometrie. In: Proceedings of the International Congress of Mathematicians, August 3–11, 1994 Zürich, Switzerland, Birkhäuser, pp 648–655 (1995)

  22. Fargues, L.: Cohomologie des espaces de modules de groupes \(p\)-divisibles et correspondances de Langlands locales. Astérisque 291, 1–199 (2004)

    MathSciNet  MATH  Google Scholar 

  23. Fargues, L.: \(G\)-torseurs en théorie de Hodge \(p\)-adique. Compos. Math. 156, 2076–2110 (2020). https://doi.org/10.1112/S0010437X20007423. https://www.cambridge.org/core/journals/compositio-mathematica/article/abs/gtorseurs-en-theorie-de-hodge-padique/0280E1DFE913BD95E4C6D114C5EBE8A7

  24. Fargues, L., Fontaine, J.-M.: Courbes et fibrés vectoriels en théorie de Hodge \(p\)-adique. Astérisque 406, 51–382 (2018)

    MATH  Google Scholar 

  25. Fontaine, J.-M., Rapoport, M.: Existence de filtrations admissibles sur des isocristaux. Bull. Soc. Math. France 133(1), 73–86 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  26. Gehrmann, L.: Automorphic \(L\)-invariants for reductive groups. arXiv:1912.05209 [math.NT]

  27. Goertz, U., He, X., Nie, S.: Fully Hodge–Newton decomposable Shimura varieties. Peking Math. J. 2, 99–154 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  28. Grosse-Klönne, E.: On special representations of \(p\)-adic reductive groups. Duke Math. J. 163(12), 2179–2216 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. Hauseux, J.: Extensions entre séries principales \(p\)-adiques et modulo \(p\) de \(G(F)\). J. Inst. Math. Jussieu 15(2), 225–270 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  30. Hauseux, J.: Compléments sur les extensions entre séries principales \(p\)-adiques et modulo \(p\) de \(G(F)\). Bull. Soc. Math. France 145(1), 161–192 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  31. Hauseux, J.: Parabolic induction and extensions. Algebra Number Theory 12(4), 779–831 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  32. Hauseux, J.: On the exactness of ordinary parts over a local field of characteristic \(p\). Pac. J. Math. 295(1), 17–30 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  33. Hauseux, J.: Sur une conjecture de Breuil–Herzig. J. Reine Angew. Math. 751, 91–119 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  34. Hauseux, J., Schmidt, T., Sorensen, C.: Functorial properties of generalised Steinberg representations. J. Number Theory 195, 312–329 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  35. Herzig, F.: The classification of irreducible admissible mod \(p\) representations of a \(p\)-adic \({{\rm GL}}_n\). Invent. Math. 186(2), 373–434 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  36. Huber, R.: Étale Cohomology of Rigid Analytic Varieties and Adic Spaces. Aspects of Mathematics, vol. 30. Vieweg+Teubner Verlag, Berlin (1996)

    MATH  Google Scholar 

  37. Huber, R.: A comparison theorem for \(\ell \)-adic cohomology. Compos. Math. 112(2), 217–235 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  38. Kedlaya, K., Liu, R.: Relative p-adic Hodge theory: foundations. Astérisque 371, 20 (2015)

    MathSciNet  MATH  Google Scholar 

  39. Kempf, G.R.: Instability in invariant theory. Ann. Math. 108(2), 299–316 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  40. Kneser, M.: Galois–Kohomologie halbeinfacher algebraischer Gruppen über \(\mathfrak{p}\)-adischen Körpern. I. Math. Z. 88, 40–47 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  41. Kneser, M.: Galois–Kohomologie halbeinfacher algebraischer Gruppen über \(\mathfrak{p}\)-adischen Körpern. II. Math. Z. 89, 250–272 (1965)

    Article  MathSciNet  Google Scholar 

  42. Kottwitz, R.E.: Isocrystals with additional structure. Compos. Math. 56(2), 201–220 (1985)

    MathSciNet  MATH  Google Scholar 

  43. Kottwitz, R.E.: Isocrystals with additional structure. II. Compos. Math. 109(3), 255–339 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  44. Labesse, J.-P.: Cohomologie, stabilisation et changement de base. Appendix A by L. Clozel, J.-P. Labesse. Appendix B by L.  Breen. Astérisque 20, 257 (1999)

    MathSciNet  Google Scholar 

  45. Lan, K.-W., Liu, R., X. Zhu, X.: De Rham comparison and Poincaré duality for rigid varieties. arXiv:1912.13030 [math.AG]

  46. Ly, T.: Représentations de Steinberg modulo \(p\) pour un groupe réductif sur un corps local. Pac. J. Math. 277(2), 425–462 (2015)

    Article  MATH  Google Scholar 

  47. Milne, J.S.: Algebraic Groups: The Theory of Group Schemes of Finite Type over a Field. Cambridge Studies in Advanced Mathematics, vol. 170. Cambridge University Press, Cambridge (2017)

    Book  Google Scholar 

  48. Mumford, D., Fogarty, J., Kirwan, F.: Geometric Invariant Theory. Third Edition. Ergebnisse der Mathematik und ihrer Grenzgebiete (2), vol. 34. Springer, Berlin (1994)

    Google Scholar 

  49. Orlik, S.: Kohomologie von Periodenbereichen über endlichen Körpern. J. Reine Angew. Math. 528, 201–233 (2000)

    MathSciNet  MATH  Google Scholar 

  50. Orlik, S.: The cohomology of period domains for reductive groups over finite fields. Ann. Scient. Éc. Norm. Sup. (4) 34(1), 63–77 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  51. Orlik, S.: The cohomology of period domains for reductive groups over local fields. Invent. Math. 162(3), 523–549 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  52. Orlik, S.: On extensions of generalized Steinberg representations. J. Algebra 293(2), 611–630 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  53. Orlik, S.: The continuous cohomology of period domains over local fields. Comment. Math. Helv. 82(3), 665–681 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  54. Orlik, S.: The pro-étale cohomology of Drinfeld’s upper half space. arXiv:1908.10591 [math.NT]

  55. Orlik, S., Strauch, M.: On some properties of the functors \(\cal{F}_P^G\) from Lie algebra to locally analytic representations. arxiv.org/abs/1802.07514 [math.NT]

  56. Ramanan, S., Ramanathan, A.: Some remarks on the instability flag. Tohoku Math. J. (2) 36(2), 269–291 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  57. Rapoport, M., Period domains over finite and local fields. In: Algebraic Geometry Santa Cruz: Proceedings of Symposia Pure Mathematics, vol. 62, part 1. American Mathematical Society, vol 1997, pp 361–381 (1995)

  58. Rapoport, M., Richartz, M.: On the classification and specialization of \(F\)-isocrystals with additional structure. Compos. Math. 103(2), 153–181 (1996)

    MathSciNet  MATH  Google Scholar 

  59. Rapoport, M., Viehmann, E.: Towards a theory of local Shimura varieties. Münster J. Math. 7(1), 273–326 (2014)

    MathSciNet  MATH  Google Scholar 

  60. Rapoport, M., Zink, T.: Period Spaces for p-Divisible Groups. Annals of Mathematics Studies 141. Princeton University Press, Princeton (1996)

    Book  MATH  Google Scholar 

  61. Riehm, C.: The norm \(1\) group of a \(\mathfrak{p}\)-adic division algebra. Am. J. Math. 92, 499–523 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  62. Schneider, P., Stuhler, U.: The cohomology of \(p\)-adic symmetric spaces. Invent. Math. 105, 47–122 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  63. Scholze, P., Weinstein, J.: Berkeley Lectures on \(p\)-Adic Geometry. Annals of Mathematics Studies, vol. 207. Princeton University Press, Princeton (2019)

    MATH  Google Scholar 

  64. Steinberg, R.: Regular elements of semisimple algebraic groups. Publ. Math. Inst. Hautes Études Sci. 25, 49–80 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  65. Tits, J.: Classification of algebraic semisimple groups. In: Algebraic Groups and Discontinuous Subgroups. Proceedings of Symposia in Pure Mathematics, vol. 9. American Mathematical Society, pp 33–62 (1966)

  66. Totaro, B.: Tensor products in \(p\)-adic Hodge theory. Duke Math. J. 83(1), 79–104 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  67. Vignéras, M.-F.: The Right Adjoint of the Parabolic Induction, in Arbeitstagung Bonn: Progress in Mathematics, vol. 319, pp. 405–425. Birkhäuser, Boston (2013)

    Google Scholar 

Download references

Acknowledgements

We would like to thank Sascha Orlik for patiently explaining to us the details of his work. We also thank Laurent Fargues for helpful discussions concerning the content of this paper. G.D. would like to thank Shanwen Wang and the Fudan University, where parts of the paper were written, for the wonderful working conditions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Colmez.

Additional information

Communicated by Wei Zhang.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The research of J.H. was partially supported by the projects ANR-11-LABX-0007-01 CEMPI and ANR-16-IDEX-0004 ULNE. The research of P.C., G.D., and W.N. was partially supported by the projects ANR-14-CE25-0002-01 PERCOLATOR and ANR-19-CE40-0015-02 COLOSS.

Appendix A: Adic potpourri

Appendix A: Adic potpourri

We gather here, as a reference, some basic facts concerning pseudo-adic spaces and compactly supported étale cohomology.

1.1 Pseudo-adic spaces

We start with pseudo-adic spaces. Recall that, Huber defines in [36] the category PPA of pre-pseudo-adic spaces, consisting of pairs \(X=(\underline{X}, |X|)\), where \(\underline{X}\) is an adic space and |X| a subset of \(\underline{X}\), morphisms \(X\rightarrow Y\) being morphisms of adic spaces \(\underline{X}\rightarrow \underline{Y}\) that send |X| into |Y|. A morphism \(f: X\rightarrow Y\) induces therefore a morphism of adic spaces \(\underline{f}: \underline{X}\rightarrow \underline{Y}\) and a map of topological spaces \(|f|: |X|\rightarrow |Y|\) (we endow |X| with the topology induced from \(\underline{X}\)). We say that f is étale if \(\underline{f}\) is étale and if |X| is open in \(\underline{f}^{-1}(|Y|)\) (this implies that |f| is an open map). The étale site \(X_{{\acute{\mathrm{e}}\mathrm{t}} }\) of X is the category of pre-pseudo-adic spaces Y étale over X with the topology such that a family of morphisms \(f_i: Y_i\rightarrow Y\) in this category is a covering if \(|Y|=\cup _{i} |f_i|(|Y_i|)\).

We mention the following properties of this construction, which we need, and we refer the reader to Huber’s book [36] for the proofs and details (see especially Sections 1.10, 2.3):

  1. (1)

    The category PPA contains (as full subcategory) the category of adic spaces (via \(X\mapsto (X, |X|)\)) and the étale topoi of X and (X, |X|) are equivalent.

  2. (2)

    If X is an adic space and \(S\subset T\) are subsets of X, the natural morphism \(i: (X,S)\rightarrow (X,T)\) in PPA satisfies \(i^*i_*F\simeq F\), for all \(F\in \mathrm{Sh}((X,S)_{{\acute{\mathrm{e}}\mathrm{t}} })\), thus \(i_*: \mathrm{Sh}((X,S)_{{\acute{\mathrm{e}}\mathrm{t}} })\rightarrow \mathrm{Sh}((X,T)_{{\acute{\mathrm{e}}\mathrm{t}} })\) is fully faithful. Moreover, if S is closed in T, then \(i_*\) is exact and identifies \(\mathrm{Sh}((X,S)_{{\acute{\mathrm{e}}\mathrm{t}} })\) with the full subcategory of \(\mathrm{Sh}((X,T)_{{\acute{\mathrm{e}}\mathrm{t}} })\) consisting of sheaves F whose restriction to \((T-S)_{{\acute{\mathrm{e}}\mathrm{t}} }\) is the final object of \(\mathrm{Sh}((T-S)_{{\acute{\mathrm{e}}\mathrm{t}} })\) ([36, Lemma 2.3.11]).

  3. (3)

    Let PA be the full subcategory of PPA consisting of pseudo-adic spaces, i.e., those X for which |X| is convex and locally pro-constructible in \(\underline{X}\). An object X of PA is called quasi-compact/quasi-separated if |X| is so, and a map \(f: X\rightarrow Y\) in PA is called quasi-compact/quasi-separated if |f| is so. If \(f: X\rightarrow Y\) is a quasi-compact quasi-separated morphism in PA and if f is adic (i.e., \(\underline{f}\) is adic), then \(\mathrm {R} ^nf_*\) commutes with pseudo-filtered inductive limits. If \(X\in PA\) is quasi-compact quasi-separated, then \(H^n_{{\acute{\mathrm{e}}\mathrm{t}} }(X,-)\) commutes with pseudo-filtered inductive limits. ([36, Lemma 2.3.13]).

  4. (4)

    If x is a point of an adic space X and if K is the henselization of the residue class field k(x) with respect to the valuation ring \(k(x)^+\), there is a natural equivalence of categories \(\mathrm{Sh}((X,\{x\})_{{\acute{\mathrm{e}}\mathrm{t}} })\simeq \mathrm{Sh}(\mathrm{Spec}(K)_{{\acute{\mathrm{e}}\mathrm{t}} })\) ([36, Prop. 2.3.10]).

  5. (5)

    Let P be one of the properties “open, closed, locally closed”. A P-subspace of \(X\in PPA\) is an object \(Y\in PPA\) for which \(\underline{Y}\) is a P-subspace of \(\underline{X}\) and |Y| is a P-subspace of |X|. The notion of P-embedding in PPA is defined in the obvious way. If \(i: X\rightarrow Y\) is a locally closed embedding in PPA then i induces an equivalence \(\mathrm{Sh}(X_{{\acute{\mathrm{e}}\mathrm{t}} })\simeq \mathrm{Sh}((\underline{Y}, i(|X|))_{{\acute{\mathrm{e}}\mathrm{t}} })\) ([36, Cor. 2.3.8]). In particular if \(i: X\rightarrow Y\) is a locally closed embedding of adic spaces then \(\mathrm{Sh}(X_{{\acute{\mathrm{e}}\mathrm{t}} })\simeq \mathrm{Sh}((Y, i(|X|))_{{\acute{\mathrm{e}}\mathrm{t}} })\).

  6. (6)

    A morphism \(f: X\rightarrow Y\) in PPA is finite if \(\underline{f}\) is finite and |X| is closed in \(\underline{f}^{-1}(|Y|)\). If \(f: X\rightarrow Y\) is a finite morphism in PA, then \(f_*: \mathrm{Sh}(X_{{\acute{\mathrm{e}}\mathrm{t}} })\rightarrow \mathrm{Sh}(Y_{{\acute{\mathrm{e}}\mathrm{t}} })\) is exact and commutes with any base change in PA \(Y'\rightarrow Y\) ([36, Prop. 2.6.3]).

  7. (7)

    A geometric point (in the category PPA) is an object \(S\in PA\) such that \(\underline{S}\) is the adic spectrum of a separably algebraically closed affinoid field ([36, 1.1.5]) and \(|S|=\{s\}\), where s is the closed point of \(\underline{S}\) ([36, 1.1.6]). For a geometric point S, the functor \(\Gamma (S,-)\) induces an equivalence \(\mathrm{Sh}(S_{{\acute{\mathrm{e}}\mathrm{t}} })\simeq \mathrm{Sets}\). A geometric point of \(X\in PPA\) is a morphism \(u: S\rightarrow X\) in PPA, where S is a geometric point. The stalk of \(F\in \mathrm{Sh}(X_{{\acute{\mathrm{e}}\mathrm{t}} })\) at S is then \(F_{S}=\Gamma (S, u^*F)\). Somewhat more explicitly, \(F_{S}\simeq \varinjlim _{(V,v)} F(V)\), the limit being over the cofiltered category \(C_S\) of pairs (Vv), where V is étale over X and \(v: S\rightarrow V\) is an X-morphism.

    The support of u is by definition \(u(|S|)\in |X|\). Two geometric points with the same support yield isomorphic stalk functors. Moreover, each \(x\in X\) induces a geometric point \(\bar{x}\) of X with support x and the family of functors \(\mathrm{Sh}(X_{{\acute{\mathrm{e}}\mathrm{t}} })\rightarrow \mathrm{Sets}, F\rightarrow F_{\bar{x}}\), for \(x\in |X|\), is conservative [36, 2.5.5]. If \(f: X\rightarrow Y\) is a morphism of analytic pseudo-adic spaces (i.e., \(\underline{X}, \underline{Y}\) are analytic adic spaces) and f is of weakly finite type and quasi-separated, then, for any maximal point y of |Y| and any \(F\in \mathrm{Sh}(X_{{\acute{\mathrm{e}}\mathrm{t}} })\), we have a natural isomorphism [36, Th. 2.6.2]

    $$\begin{aligned} (\mathrm {R} ^n f_* F)_{\bar{y}}\simeq H^n_{{\acute{\mathrm{e}}\mathrm{t}} }(X\times _Y \bar{y}, F). \end{aligned}$$
  8. (8)

    One can define (see [36, Sec. 2.5]), for each geometric point \(\xi \) of \(X\in PPA\), the strict localization \(X(\xi )\) of X at \(\xi \). It comes with an X-morphism \(\xi \rightarrow X(\xi )\), and the isomorphism class of \(X(\xi )\) as X-space depends only on the support of \(\xi \). If \(X\in PA\) and \(\xi ,\xi '\) are geometric points of X, a specialization morphism \(u:\xi \rightarrow \xi '\) is an X-morphism in PA \(X(\xi )\rightarrow X(\xi ')\). It induces functorial maps \(u^*(F): F_{\xi '}\rightarrow F_{\xi }\) for \(F\in \mathrm{Sh}(X_{{\acute{\mathrm{e}}\mathrm{t}} })\), via the natural isomorphisms \(\Gamma (X(\xi ), F|X(\xi ))\simeq F_{\xi }\) and \(\Gamma (X(\xi '), F|X(\xi '))\simeq F_{\xi '}\).

1.2 Compactly supported cohomology

We survey Huber’s compactly supported étale cohomology and introduce continuous compactly supported étale cohomology.

1.2.1 Huber’s compactly supported étale cohomology

Huber defined compactly supported étale cohomology of analytic pseudo-adic spaces in [36, Ch. 5]; in [37] he extended this definition to \(\ell \)-adic sheaves. We will briefly recall its properties.

Fix a prime \(\ell \). Let X be a taut separated pseudo-adic space locally of \(^{+}\)weakly finite type over C (i.e., over \({\text {Spa}} (C,{\mathscr {O}}_C)\)). For \( i\ge 0\), we set

$$\begin{aligned} H^i_{{\acute{\mathrm{e}}\mathrm{t}} ,\mathrm{c,Hu}}(X, {\mathbf{Z}} _{\ell }):=H^i\mathrm {R} \Gamma _{\mathrm{c,Hu}}(X_{{\acute{\mathrm{e}}\mathrm{t}} },( {\mathbf{Z}} /\ell ^n)_n),\quad H^i_{{\acute{\mathrm{e}}\mathrm{t}} ,\mathrm{c,Hu}}(X, {\mathbf{Q}}_\ell ) :=H^i_{{\acute{\mathrm{e}}\mathrm{t}} ,\mathrm{c,Hu}}(X, {\mathbf{Z}} _\ell )\otimes {\mathbf{Q}}_\ell , \end{aligned}$$

where the functor \(\mathrm {R} \Gamma _{\mathrm{c,Hu}}\) is defined in the following way.

If X is partially proper, then it is the right derived functor of \(\Gamma _{\mathrm{c,Hu}}\), i.e., of the left exact functor

$$\begin{aligned} \Gamma _\mathrm{c,Hu}: \mathrm{mod}(X_{{\acute{\mathrm{e}}\mathrm{t}} }- {\mathbf{Z}} _\ell ^{{\scriptscriptstyle \bullet }})\rightarrow \mathrm{mod}( {\mathbf{Z}} _\ell ),\quad (F_n)_n\mapsto \Gamma _c\left( X_{{\acute{\mathrm{e}}\mathrm{t}} },\varprojlim _n F_n\right) . \end{aligned}$$

Here \(\mathrm{mod}(X_{{\acute{\mathrm{e}}\mathrm{t}} }- {\mathbf{Z}} ^{{\scriptscriptstyle \bullet }}_\ell )\) is the category of projective systems \((F_n)_n\) of \( {\mathbf{Z}} _\ell \)-modules on \(X_{{\acute{\mathrm{e}}\mathrm{t}} }\) such that \(p^nF_n=0\), \(n\in {\mathbf{N}}\). Recall that, for an étale sheaf F, \(\Gamma _c(X_{{\acute{\mathrm{e}}\mathrm{t}} },F)\) denotes the abelian group of global sections whose support is proper.

In general one sets

$$\begin{aligned} \mathrm {R} \Gamma _{\mathrm{c,Hu}}(X_{{\acute{\mathrm{e}}\mathrm{t}} },(F_n)_n):=\mathrm {R} \Gamma _{\mathrm{c,Hu}}(\overline{X}_{{\acute{\mathrm{e}}\mathrm{t}} },(i_!F_n)_n), \end{aligned}$$

where \(i:X\hookrightarrow \overline{X}\) is a locally closed embedding and \(\overline{X}\) is partially proper. This definition is, of course, independent of the chosen partially proper compactification. We have

$$\begin{aligned} \Gamma _\mathrm{c,Hu}(X_{{\acute{\mathrm{e}}\mathrm{t}} },(F_n)_n)=\{(s_n)_n\in \varprojlim _n\Gamma (X_{{\acute{\mathrm{e}}\mathrm{t}} },F_n)|\overline{\cup _n\mathrm{supp}(s_n)} \text { is proper}\}. \end{aligned}$$

We list the following properties:

  1. (1)

    If X is proper then

    $$\begin{aligned} \mathrm {R} \Gamma _{\mathrm{c,Hu}}(X_{{\acute{\mathrm{e}}\mathrm{t}} },(F_n)_n)\simeq \mathrm {R} \Gamma (X_{{\acute{\mathrm{e}}\mathrm{t}} },(F_n)_n). \end{aligned}$$
  2. (2)

    An isomorphism [37, Lemma 2.3] of exact functors from \(D^+(\mathrm{mod}(X_{{\acute{\mathrm{e}}\mathrm{t}} }- {\mathbf{Z}} ^{{\scriptscriptstyle \bullet }}_\ell ))\) to \(D^+(\mathrm{mod}( {\mathbf{Z}} _\ell ))\):

    $$\begin{aligned} \mathrm {R} \Gamma _\mathrm{c,Hu}=\mathrm {R} \Gamma _{!}\circ \mathrm {R} \pi _*, \end{aligned}$$

    for the discretization functor

    $$\begin{aligned} \pi _*: \mathrm{mod}(X_{{\acute{\mathrm{e}}\mathrm{t}} }- {\mathbf{Z}} ^{{\scriptscriptstyle \bullet }}_\ell )\rightarrow \mathrm{mod}(X_{{\acute{\mathrm{e}}\mathrm{t}} }- {\mathbf{Z}} _\ell ),\quad (F_n)_n\mapsto \varprojlim _nF_n, \end{aligned}$$

    and the functor

    $$\begin{aligned} \Gamma _{!}: \mathrm{mod}(X_{{\acute{\mathrm{e}}\mathrm{t}} }- {\mathbf{Z}} _\ell )\rightarrow \mathrm{mod}( {\mathbf{Z}} _\ell ),\quad F\mapsto \Gamma _{c}(X_{{\acute{\mathrm{e}}\mathrm{t}} },F). \end{aligned}$$
  3. (3)

    If X is quasi-compact, there is an exact sequence [37, Cor. 2.4]

    $$\begin{aligned} 0\rightarrow \mathrm {R} ^1\varprojlim _nH^{i-1}_{{\acute{\mathrm{e}}\mathrm{t}} ,c}(X,F_n)\rightarrow H^i_{{\acute{\mathrm{e}}\mathrm{t}} ,\mathrm{c,Hu}}(X,(F_n)_n)\rightarrow \varprojlim _nH^i_{{\acute{\mathrm{e}}\mathrm{t}} ,c}(X,F_n)\rightarrow 0 \end{aligned}$$
  4. (4)

    Let U be a taut open subspace of X, let \(Z=X{\setminus } U\), and let \(i: Z\hookrightarrow X\) be the inclusion. Assume that XU are partially proper. Then we have a distinguished triangle

    $$\begin{aligned} \mathrm {R} \Gamma _{\mathrm{c,Hu}}(U_{{\acute{\mathrm{e}}\mathrm{t}} },(F_n|U)_n) \rightarrow \mathrm {R} \Gamma _{\mathrm{c,Hu}}(X_{{\acute{\mathrm{e}}\mathrm{t}} }, (F_n)_n)\rightarrow \mathrm {R} \Gamma _{c}(Z_{{\acute{\mathrm{e}}\mathrm{t}} }, i^*\mathrm {R} \pi _*(F_n)_n) \end{aligned}$$
  5. (5)

    Let \({\mathbb U} \) be an open covering of X such that every \(U \in {\mathbb U} \) is taut and, for every \(U, V\in {\mathbb U}\), there exists a \(W \in {\mathbb U}\) such that \(U \cup V\subset W\). Then, the map

    $$\begin{aligned} \varinjlim _{U\in {\mathbb U}} H^i_{{\acute{\mathrm{e}}\mathrm{t}} ,\mathrm{c,Hu}} (U,(F_n|U)_n)\rightarrow H^i_{{\acute{\mathrm{e}}\mathrm{t}} , \mathrm{c,Hu}} (X,(F_n)_n),\quad i\ge 0,\end{aligned}$$

    is an isomorphism [37, Prop. 2.1.].

  6. (6)

    Let X be adic and partially proper and let G be a locally profinite group acting continuously on X. Then \(H^i_{{\acute{\mathrm{e}}\mathrm{t}} ,c}(X, {\mathbf{Z}} /{\ell }^n)\), \(i\ge 0\), is a smooth G-module [6, Cor. 7.8].

Let us now distinguish two cases.

(i) The case \(\ell \ne p\). We can say more in this case.

  1. (1)

    If X is as at the beginning of this section and of finite type over C and if \((F_n)_n\) is a quasi-constructible \( {\mathbf{Z}} _\ell ^{{\scriptscriptstyle \bullet }}\)-module on \(X_{{\acute{\mathrm{e}}\mathrm{t}} }\) then the natural map

    $$\begin{aligned} H^i_{{\acute{\mathrm{e}}\mathrm{t}} ,\mathrm{c,Hu}}(X,(F_n)_n)\rightarrow \varprojlim _n H^i_{{\acute{\mathrm{e}}\mathrm{t}} ,c}(X,F_n) \end{aligned}$$

    is a bijection. Moreover, the projective system \((H^i_{{\acute{\mathrm{e}}\mathrm{t}} ,c}(X,F_n))_n\) is \(\ell \)-adic and every \(H^i_{{\acute{\mathrm{e}}\mathrm{t}} ,c}(X,F_n)\) is a finitely generated \( {\mathbf{Z}} _{\ell }\)-module (hence also \(H^i_{{\acute{\mathrm{e}}\mathrm{t}} ,\mathrm{c,Hu}}(X,(F_n)_n)\) is a finitely generated \( {\mathbf{Z}} _{\ell }\)-module).

  2. (2)

    If \(X=Y^{{\text {ad}} }\), for a separated scheme Y of finite type over C, and if \((F_n)_n\) is a constructible \( {\mathbf{Z}} _\ell ^{{\scriptscriptstyle \bullet }}\)-module on \(Y_{{\acute{\mathrm{e}}\mathrm{t}} }\), there is a natural isomorphism

    $$\begin{aligned} H^i_{{\acute{\mathrm{e}}\mathrm{t}} ,c}(Y,(F_n)_n){\mathop {\rightarrow }\limits ^{\sim }} H^i_{{\acute{\mathrm{e}}\mathrm{t}} ,\mathrm{c,Hu}}(X,(F_n)_n). \end{aligned}$$
  3. (3)

    Let X be adic and partially proper and let G be a locally profinite group, with an open pro-p subgroup, acting continuously on X. Let \((F_n)_n\) be a locally constant overconvergent \( {\mathbf{Z}} _{\ell }^{{\scriptscriptstyle \bullet }}\)-module equipped with a compatible discrete G-action (see [16, B.1.3] for the definition). Then \(H^i_{{\acute{\mathrm{e}}\mathrm{t}} ,\mathrm{c,Hu}}(X,(F_n)_n)\), \(i\ge 0\), is a smooth G-module [16, Prop. B.2.5], [22, 4.1.19].

(ii) The case \(\ell = p\). In this case cohomology with compact support behaves very differently. We will discuss an example.

Example 7.1

Let \({\mathbb A}^1_C\) be the adic affine space of dimension 1; this is a period domain, with \(G:={\mathbb G}_{m, {\mathbf{Q}}_p}\times {\mathbb G}_{m, {\mathbf{Q}}_p}\) the relevant reductive group [3, 5.3.1, 4.2.2]. We have the exact sequence

$$\begin{aligned} 0&\rightarrow H^1_{{\acute{\mathrm{e}}\mathrm{t}} }(x_{\infty },i^*_{\infty }\mathrm {R} \pi _*( {\mathbf{Z}} /p^n(1))_n) \rightarrow H^2_{{\acute{\mathrm{e}}\mathrm{t}} ,\mathrm{c,Hu}}({\mathbb A}^1_C, {\mathbf{Z}} _p(1)) \rightarrow H^2_{{\acute{\mathrm{e}}\mathrm{t}} }({\mathbb P}^1_C, {\mathbf{Z}} _p(1)) \\&\rightarrow H^2_{{\acute{\mathrm{e}}\mathrm{t}} }(x_{\infty },i^*_{\infty }\mathrm {R} \pi _*( {\mathbf{Z}} /p^n(1))_n), \end{aligned}$$

where \(i_{\infty }: x_{\infty }\hookrightarrow {\mathbb P}^1_C\) is the point at infinity. Picking the fundamental neighborhoods of \(x_{\infty }\) consisting of closed balls, we compute easily that

$$\begin{aligned} i^*_{\infty }\mathrm {R} ^i\pi _*( {\mathbf{Z}} /p^n(1))_n\simeq {\left\{ \begin{array}{ll} {\mathbf{Z}} _p(1) &{} \text{ if } i=0,\\ \varinjlim _j (\varprojlim _nH^1_{{\acute{\mathrm{e}}\mathrm{t}} }(E(j), {\mathbf{Z}} /p^n(1))) &{} \text{ if } i=1,\\ 0 &{} \text{ if } i\ge 2, \end{array}\right. } \end{aligned}$$

where E(j) is the closed ball centered at \(x_{\infty }\) and of radius \(p^{-j}\). We used here the fact that \(H^i_{{\acute{\mathrm{e}}\mathrm{t}} }(E(j), {\mathbf{Z}} /p^n(1))=0, i\ge 2\). Since \(\mathrm{Pic}(E(j))=0\), the Kummer exact sequence implies that

$$\begin{aligned} H^1_{{\acute{\mathrm{e}}\mathrm{t}} }(E(j), {\mathbf{Z}} /p^n(1))\simeq C\{T^{-1}\}^*/C\{T^{-1}\}^{*p^n}. \end{aligned}$$

Hence \(H^2_{{\acute{\mathrm{e}}\mathrm{t}} }(x_{\infty },i^*_{\infty }\mathrm {R} \pi _*( {\mathbf{Z}} /p^n(1))_n)=0\). We also claim that

$$\begin{aligned} H^1_{{\acute{\mathrm{e}}\mathrm{t}} }(x_{\infty },i^*_{\infty }\mathrm {R} \pi _*( {\mathbf{Z}} /p^n(1))_n) \simeq \varinjlim _j C\{(p^jT)^{-1}\}^{*{\wedge }}. \end{aligned}$$

Since \(x_{\infty }\) is simply a geometric point (thus étale sheaves are acyclic on it), we have (using the local-global spectral sequence relating \(H^i_{{\acute{\mathrm{e}}\mathrm{t}} }(x_{\infty }, H^j(K))\) and \(H^{i+j}_{{\acute{\mathrm{e}}\mathrm{t}} }(x_{\infty }, K)\) for a complex of sheaves K, as well as the computation above)

$$\begin{aligned} H^1_{{\acute{\mathrm{e}}\mathrm{t}} }(x_{\infty },i^*_{\infty }\mathrm {R} \pi _*( {\mathbf{Z}} /p^n(1))_n)&\simeq H^0_{{\acute{\mathrm{e}}\mathrm{t}} }(x_{\infty }, i^*_{\infty }\mathrm {R} ^1\pi _*( {\mathbf{Z}} /p^n(1))_n) \simeq \varinjlim _j (\varprojlim _n H^1_{{\acute{\mathrm{e}}\mathrm{t}} }(E(j), {\mathbf{Z}} /p^n(1))) \\&\simeq \varinjlim _j (\varprojlim _n C\{T^{-1}\}^*/C\{T^{-1}\}^{*p^n}) \simeq \varinjlim _j C\{(p^jT)^{-1}\}^{*{\wedge }}. \end{aligned}$$

It follows that

$$\begin{aligned} H^2_{{\acute{\mathrm{e}}\mathrm{t}} ,\mathrm{c,Hu}}({\mathbb A}^1_C, {\mathbf{Z}} _p(1))\simeq (\varinjlim _n C\{(p^nT)^{-1}\}^{*{\wedge }} )\oplus {\mathbf{Z}} _p. \end{aligned}$$

In the case \(\ell \ne p\), the same computation gives \( {\mathbf{Z}} _\ell \) as a result since \(C\{(p^n T)^{-1}\}^{*{\wedge }}\) is \(\ell \)-divisible. Note that \(C\{T^{-1}\}^*/C^*=1+T^{-1}{\mathfrak m}_C\{T^{-1}\}\) and that its image by the logarithm satisfies

$$\begin{aligned} p T^{-1}{\mathfrak m}_C\{T^{-1}\}\subset \log \big ( 1+T^{-1}{\mathfrak m}_C\{T^{-1}\}\big ) \subset (pT)^{-1}{\mathfrak m}_C\{(pT)^{-1}\}. \end{aligned}$$

One gets the same inclusions for the p-adic completion. Hence the above inductive limit is isomorphic, via the logarithm, to the inductive limit of the \((p^nT)^{-1}{\mathfrak m}_C\{(p^nT)^{-1}\}\) and so

$$\begin{aligned} H^2_{{\acute{\mathrm{e}}\mathrm{t}} ,\mathrm{c,Hu}}({\mathbb A}^1_C, {\mathbf{Z}} _p(1))\simeq \big ({\mathscr {O}}_{{\mathbb P}^1,\infty }/C\big )\oplus {\mathbf{Z}} _p. \end{aligned}$$

Hence the \(\ell \)-adic compactly supported cohomology groups behave very differently in the cases \(\ell =p\) and \(\ell \ne p\), where \(H^2_{{\acute{\mathrm{e}}\mathrm{t}} ,\mathrm{c,Hu}}({\mathbb A}^1_C, {\mathbf{Z}} _{\ell }(1))\simeq {\mathbf{Z}} _{\ell }\). Note also that the action of \(G( {\mathbf{Q}}_p)\) on \(H^2_{{\acute{\mathrm{e}}\mathrm{t}} ,\mathrm{c,Hu}}({\mathbb A}^1_C, {\mathbf{Z}} _p(1))\) is not smooth, contrary to the case \(\ell \ne p\).

1.2.2 Continuous compactly supported étale cohomology

We will also study a different version of Huber’s compactly supported cohomology: For X as in Sect. 1, we define its (continuous) compactly supported cohomology by:

$$\begin{aligned} \mathrm {R} \Gamma _\mathrm{c}(X_{{\acute{\mathrm{e}}\mathrm{t}} },(F_n)_n):= \mathrm {R} \varprojlim _n\mathrm {R} \Gamma _c(X_{{\acute{\mathrm{e}}\mathrm{t}} },F_n). \end{aligned}$$

We have

$$\begin{aligned} \Gamma _\mathrm{c}(X_{{\acute{\mathrm{e}}\mathrm{t}} },(F_n)_n)=\left\{ (s_n)_n\in \varprojlim _n\Gamma (X_{{\acute{\mathrm{e}}\mathrm{t}} },F_n)|\mathrm{supp}(s_n) \text { is proper}\right\} . \end{aligned}$$

The following properties are obtained directly from the definition and the corresponding properties for the compactly supported cohomology of \(F_n\)’s.

  1. (1)

    There is an exact sequence

    $$\begin{aligned} 0\rightarrow \mathrm {R} ^1\varprojlim _nH^{i-1}_{{\acute{\mathrm{e}}\mathrm{t}} ,c}(X,F_n)\rightarrow H^i_{{\acute{\mathrm{e}}\mathrm{t}} ,\mathrm{c}}(X,(F_n)_n)\rightarrow \varprojlim _nH^i_{{\acute{\mathrm{e}}\mathrm{t}} ,c}(X,F_n)\rightarrow 0. \end{aligned}$$
  2. (2)

    Let U be a taut open subspace of X, let \(Z=X{\setminus } U\), and let \(i: Z\hookrightarrow X\) be the inclusion. Then we have a distinguished triangle

    $$\begin{aligned} \mathrm {R} \Gamma _\mathrm{c}(U_{{\acute{\mathrm{e}}\mathrm{t}} },(F_n|U)_n) \rightarrow \mathrm {R} \Gamma _\mathrm{c}(X_{{\acute{\mathrm{e}}\mathrm{t}} }, (F_n)_n)\rightarrow \mathrm {R} \Gamma _\mathrm{c}(Z_{{\acute{\mathrm{e}}\mathrm{t}} }, i^*(F_n)_n). \end{aligned}$$

To lighten the notation, for \(i\ge 0\), we will set

$$\begin{aligned} H^i_{{\acute{\mathrm{e}}\mathrm{t}} ,\mathrm{c}}(X, {\mathbf{Z}} _p):=H^i_{{\acute{\mathrm{e}}\mathrm{t}} ,\mathrm{c}}(X,( {\mathbf{Z}} /p^n)_n),\quad H^i_{{\acute{\mathrm{e}}\mathrm{t}} ,\mathrm{c}}(X, {\mathbf{Q}}_p):=H^i_{{\acute{\mathrm{e}}\mathrm{t}} ,\mathrm{c}}(X, {\mathbf{Z}} _p)\otimes _{ {\mathbf{Z}} _p} {\mathbf{Q}}_p. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Colmez, P., Dospinescu, G., Hauseux, J. et al. p-adic étale cohomology of period domains. Math. Ann. 381, 105–180 (2021). https://doi.org/10.1007/s00208-020-02139-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-020-02139-6

Navigation