Skip to main content
Log in

The Dirichlet principle for inner variations

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We are concerned with the Dirichlet energy of mappings defined on domains in the complex plane. The Dirichlet Principle, the name coined by Riemann, tells us that the outer variation of a harmonic mapping increases its energy. Surprisingly, when one jumps into details about inner variations, which are just a change of independent variables, new equations and related questions start to matter. The inner variational equation, called the Hopf–Laplace equation, is no longer the Laplace equation. Its solutions are generally not harmonic; we refer to them as Hopf harmonics. The natural question that arises is how does a change of variables in the domain of a Hopf harmonic map affect its energy? We show, among other results, that in case of a simply connected domain the energy increases. This should be viewed as Riemann’s Dirichlet Principle for Hopf harmonics. The Dirichlet Principle for Hopf harmonics in domains of higher connectivity is not completely solved. What complicates the matter is the insufficient knowledge of global structure of trajectories of the associated Hopf quadratic differentials, mainly because of the presence of recurrent trajectories. Nevertheless, we have established the Dirichlet Principle whenever the Hopf differential admits closed trajectories and crosscuts. Regardless of these assumptions, we established the so-called Infinitesimal Dirichlet Principle for all domains and all Hopf harmonics. Precisely, the second order term of inner variation of a Hopf harmonic map is always nonnegative.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Antman, S. S.: Nonlinear problems in elasticity. In: Applied Mathematical Sciences, vol. 107. Springer, New York (1995)

  2. Astala, K., Iwaniec, T., Martin, G.: Elliptic Partial Differential Equations and Quasiconformal Mappings in the Plane. Princeton University Press, Princeton (2009)

    MATH  Google Scholar 

  3. Ball, J. M.: Convexity conditions and existence theorems in nonlinear elasticity. Arch. Rational Mach. Anal. 63(4), 337–403 (1976/77)

  4. Ball, J.M.: Global invertibility of Sobolev functions and the interpenetration of matter. Proc. R. Soc. Edinb. Sect. A 88(3–4), 315–328 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ball, J. M.: Constitutive inequalities and existence theorems in nonlinear elastostatics. In: Nonlinear analysis and mechanics: Heriot-Watt Symposium (Edinhurgh, 1976), Vol. I, pp. 187–241. Research Notes in Mathematics, No. 17. Pitman, London (1977)

  6. Ball, J. M.: Existence of solutions in finite elasticity. In: Proceedings of the IUTAM Symposium on Finite Elasticity. Martinus Nijhoff (1981)

  7. Ball, J. M.: Minimizers and the Euler-Lagrange equations. Trends and applications of pure mathematics to mechanics (Palaiseau, 1983), pp. 1–4. In: Lecture Notes in Physics, vol. 195. Springer, Berlin (1984)

  8. Ball, J.M.: Some Open Problems in Elasticity, Geometry, Mechanics, and Dynamics, 3–59. Springer, New York (2002)

    Google Scholar 

  9. Bauman, P., Phillips, D., Owen, N.: Maximum principles and a priori estimates for an incompressible material in nonlinear elasticity. Commun. Partial Differ. Equ. 17(7–8), 1185–1212 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  10. Benešová, B., Kružík, M.: Characterization of gradient Young measures generated by homeomorphisms in the plane. ESAIM Control Optim. Calc. Var. 22(1), 267–288 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bouchala, O., Hencl, S., Molchanova, A.: Injectivity almost everywhere for weak limits of Sobolev homeomorphisms. J. Funct. Anal. 279(7), 108658 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  12. Campbell, D., Hencl, S., Kauranen, A., Radici, E.: Strict limits of planar BV homeomorphisms. Nonlinear Anal. 177(part A), 209–237 (2018)

  13. Ciarlet, P. G.: Mathematical elasticity, vol.1. Three-dimensional elasticity. In: Studies in Mathematics and Its Applications, 20. North-Holland Publishing Co. Amsterdam (1988)

  14. Ciarlet, P.G., Nečas, J.: Injectivity and self-contact in nonlinear elasticity. Arch. Rational Mech. Anal. 97(3), 171–188 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  15. Conti, S., De Lellis, C.: Some remarks on the theory of elasticity for compressible Neohookean materials. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 2, 521–549 (2003)

    MathSciNet  MATH  Google Scholar 

  16. Courant, R.: Dirichlet’s Principle, Conformal Mapping, and Minimal Surfaces. With an Appendix by M. Schiffer. Springer, New York (1950)

    MATH  Google Scholar 

  17. Cristina, J., Iwaniec, T., Kovalev, L.V., Onninen, J.: The Hopf-Laplace equation: harmonicity and regularity. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 13(4), 1145–1187 (2014)

    MathSciNet  MATH  Google Scholar 

  18. Garabedian, P.R., Schiffer, M.: Convexity of domain functionals. J. Anal. Math. 2, 281–368 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gehring, F.W.: Rings and quasiconformal mappings in space. Trans. Am. Math. Soc. 103, 353–393 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gehring, F.W., Martin, G.J., Palka, B.P.: An introduction to the theory of higher-dimensional quasiconformal mappings, Mathematical Surveys and Monographs, 216. American Mathematical Society, Providence, RI (2017)

    Google Scholar 

  21. Grandi, D., Kružík, M., Mainini, E., Stefanelli, U.: A phase-field approach to Eulerian interfacial energies. Arch. Ration. Mech. Anal. 234(1), 351–373 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hencl, S., Koskela, P.: Lectures on mappings of finite distortion. In: Lecture Notes in Mathematics, vol. 2096. Springer, Cham (2014)

  23. Henrot, A., Pierre, M.: Variation et Optimisation de Formes, Mathématiques & Applications [Mathematics & Applications], 48. Springer, Berlin (2005)

    Google Scholar 

  24. Henry, D.: Perturbation of the Boundary in Boundary-Value Problems of Partial Differential Equations, London Mathematical Society Lecture Note Series, 318. Cambridge University Press, Cambridge (2005)

    Book  Google Scholar 

  25. Hopf, H.: Differential geometry in the large. In: Seminar Lectures New York University 1946 and Stanford University (1956)

  26. Hubbard, J., Masur, H.: Quadratic differentials and foliations. Acta Math. 142(3–4), 221–274 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  27. Iwaniec, T.: Hilbert transform in the complex plane and area inequalities for certain quadratic differentials. Michigan Math. J. 34(3), 407–434 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  28. Iwaniec, T., Kovalev, L.V., Onninen, J.: Lipschitz regularity for inner-variational equations. Duke Math. J. 162(4), 643–672 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  29. Iwaniec, T., Martin, G.: Geometric Function Theory and Non-linear Analysis. Oxford Mathematical Monographs. Oxford University Press, Oxford (2001)

    Google Scholar 

  30. Iwaniec, T., Onninen, J.: Hyperelastic deformations of smallest total energy. Arch. Ration. Mech. Anal. 194(3), 927–986 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  31. Iwaniec, T., Onninen, J.: Neohookean deformations of annuli, existence, uniqueness and radial symmetry. Math. Ann. 348(1), 35–55 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  32. Iwaniec, T., Onninen, J.: \(n\)-Harmonic mappings between annuli. Mem. Am. Math. Soc. 218 (2012)

  33. Iwaniec, T., Onninen, J.: Mappings of least Dirichlet energy and their Hopf differentials. Arch. Ration. Mech. Anal. 209(2), 401–453 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  34. Iwaniec, T., Onninen, J.: Invertibility versus Lagrange equation for traction free energy-minimal deformations. Calc. Var. Partial Differ. Equ. 52(3–4), 489–496 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  35. Iwaniec, T., Onninen, J.: Monotone Sobolev mappings of planar domains and surfaces. Arch. Ration. Mech. Anal. 219(1), 159–181 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  36. Iwaniec, T., Onninen, J.: Limits of Sobolev homeomorphisms. J. Eur. Math. Soc., (JEMS) 19(2), 473–505 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  37. Iwaniec, T., Onninen, J.: Mapping of smallest mean distortion & free Lagrangians. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 20(1), 1–106 (2020)

    MathSciNet  MATH  Google Scholar 

  38. Iwaniec, T., Onninen, J.: Monotone Hopf harmonics. Arch. Ration. Mech. Anal. 237(2), 743–777 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  39. Iwaniec, T., Vogel, A., Verchota, G.: The failure of rank-one connections. Arch. Rational Mech. Anal. 163, 125–169 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  40. Jenkins, J.A.: Positive quadratic differentials in triply-connected domains. Ann. Math. 53, 1–3 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  41. Jenkins, J.A.: Univalent Functions and Conformal Mappings. Springer, New York (1958)

    Book  MATH  Google Scholar 

  42. Jenkins, J.A.: On the global structure of the trajectories of a positive quadratic differential. Ill. J. Math. 4, 405–412 (1960)

    MathSciNet  MATH  Google Scholar 

  43. Jenkins, J.A.: A topological three pole theorem. Indiana Univ. Math. J. 21(11), 1013–1018 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  44. Jenkins, J.A., Spencer, D.C.: Hyperelliptic trajectories. Ann. Math. (2) 53, 4–35 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  45. Kaplan, W.: On the three pole theorem. Math. Nachr. 75, 299–309 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  46. Khludnev, A.M., Sokolowski, J.: Modelling and control in solid mechanics. International Series of Numerical Mathematics, 122. Birkhäuser, Basel (1997)

    MATH  Google Scholar 

  47. Kuz’mina, G.V.: Moduli of families of curves and quadratic differentials. In: A Translation of Trudy Mathematics Institute Steklov, vol. 139 (1980). Proceedings of the Steklov Institute of Mathematics, vol. 1 (1982)

  48. Krömer, S.: Global invertibility for orientation-preserving Sobolev maps via invertibility on or near the boundary. Arch. Ration. Mech. Anal. 238(3), 1113–1155 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  49. Marsden, J.E., Hughes, T.J.R.: Mathematical Foundation of Elasticity. Dover Publications Inc, New York (1994)

    Google Scholar 

  50. Molchanova, A., Vodopyanov, S.: Injectivity almost everywhere and mappings with finite distortion in nonlinear elasticity. In: Calculus of Variations and Partial Differential Equations, vol. 59(1), Paper no. 17, pp 1–25 (2020)

  51. Müller, S., Spector, S.: An existence theory for nonlinear elasticity that allows for cavitation. Arch. Rational Mech. Anal. 131(1), 1–66 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  52. Rudin, W.: Well-distributed measurable sets. Am. Math. Mon. 90(1), 41–42 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  53. Sandier, E., Serfaty, S.: Limiting vorticities for the Ginzburg-Landau equations. Duke Math. J. 117(3), 403–446 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  54. Simoson, A.: An “Archimedean” paradox. Am. Math. Mon. 89(2), 114–116 (1982)

    MathSciNet  MATH  Google Scholar 

  55. Sivaloganathana, J., Spector, S.J.: On irregular weak solutions of the energy-momentum equations. Proc. R. Soc. Edinb. A 141, 193–204 (2011)

    Article  MathSciNet  Google Scholar 

  56. Strebel, K.: Quadratic Differentials. Springer, New York (1984)

    Book  MATH  Google Scholar 

  57. Taheri, A.: Quasiconvexity and uniqueness of stationary points in the multi-dimensional calculus of variations. Proc. Am. Math. Soc. 131(10), 3101–3107 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  58. Thurston, W.P.: On the geometry and dynamics of diffeomorphisms of surfaces. Bull. Am. Math. Soc. (N.S.) 19(2), 417–431 (1988)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank the referees for careful reading of the manuscript, and helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jani Onninen.

Additional information

Communicated by Y. Giga.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Tadeusz Iwaniec was supported by the NSF Grant DMS-1802107. Jani Onninen was supported by the NSF Grant DMS-1700274.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iwaniec, T., Onninen, J. The Dirichlet principle for inner variations. Math. Ann. 383, 315–351 (2022). https://doi.org/10.1007/s00208-020-02133-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-020-02133-y

Mathematics Subject Classification

Navigation