Skip to main content
Log in

Application of Immobilized Laccase on Polyurethane Foam for Ex-Situ Polycyclic Aromatic Hydrocarbons Bioremediation

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

There is growing concern about developing treatment technologies for the hazardous Polycyclic Aromatic Hydrocarbons (PAHs), because the rising levels of these compounds in the environment by human activities. The application of laccases has been evaluated as one of the most promising treatments. Thus, laccase immobilization on polyurethane foam (PUF)—low-cost material—was evaluated for bioremediation in batch mode of simulated groundwater using a combination of 16 polycyclic aromatic hydrocarbons as model pollutants. Conditions closer to a real contaminated site (non-optimal) were considered on our experimental design, leading to the formation of new degradation intermediaries, even more degraded than the usual ones. The bioremediation of PAH (mg L−1) using immobilized laccase on PUF reached 92.35% of removal for anthracene (Ant) and 97% for benzo(a)pyrene (BaP). After the treatment, the biodegradation products were identified as diisooctyl phthalate and tetradecane. The biodegradation mechanism was proposed, where PAHs oxidation processes and aromatic ring fission led to quinone and diethyl phthalate formation. Then, through the latter processes besides, polymerization and methylation, lead to the identified biodegradation product formation. The immobilized enzyme improvement in the removal yield of 8 of the other 14 PAHs tested in μg L−1, compared to the free counterpart. Laccase immobilized on PUF achieved final anthracene concentration of 0.95 mg L−1, up to 38 μg L−1 of chrysene (77% removal) and 98 μg L−1 of pyrene (32% removal), under the intervention limits of environmental protection policies. Thus, laccase immobilized on PUF for use in bioreactors can be considered a potential approach for PAHs bioremediation for an ex-situ treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2 
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Abdel-Shafy HI, Mansour MSM (2016) A review on polycyclic aromatic hydrocarbons: source, environmental impact, effect on human health and remediation. Egypt J Petrol 25:107. https://doi.org/10.1016/j.ejpe.2015.03.011

    Article  Google Scholar 

  2. Eom SY, Yim DH, Moon SI, Youn JW, Kwon HJ, Oh HC, Yang JJ, Park SK, Yoo KY, Kim HS, Lee KS, Chang SH, Kim YD, Kang JW, Kim H (2013) Polycyclic aromatic hydrocarbon-induced oxidative stress, antioxidant capacity, and the risk of lung cancer: a pilot nested case-control study. Anticancer Res 33:3089

    CAS  PubMed  Google Scholar 

  3. Ball A, Truskewycz A (2013) Polyaromatic hydrocarbon exposure: an ecological impact ambiguity. Environ Sci Pollut Res Int 20:4311. https://doi.org/10.1007/s11356-013-1620-2

    Article  CAS  PubMed  Google Scholar 

  4. Llobet JM, Falcó G, Bocio A, Domingo JL (2006) Exposure to polycyclic aromatic hydrocarbons through consumption of edible marine species in Catalonia. Spain J Food Prot 69:2493. https://doi.org/10.4315/0362-028X-69.10.2493

    Article  CAS  PubMed  Google Scholar 

  5. Kuppusamy S, Thavamani P, Venkateswarlu K, Lee YB, Naidu R, Megharaj M (2017) Remediation approaches for polycyclic aromatic hydrocarbons (PAHs) contaminated soils: technological constraints emerging trends and future directions. Chemosphere 168:944. https://doi.org/10.1016/j.chemosphere.2016.10.115

    Article  CAS  PubMed  Google Scholar 

  6. Liang X, Guo C, Liao C, Liu S, Wick LY, Peng D, Yi X, Lu G, Lin Z, Dang Z (2017) Drivers and applications of integrated clean-up technologies for surfactant-enhanced remediation of environments contaminated with polycyclic aromatic hydrocarbons (PAHs). Environ Pollut 225:129. https://doi.org/10.1016/j.envpol.2017.03.045

    Article  CAS  PubMed  Google Scholar 

  7. Sun Y, Zhang S, Lan J, Xie Z, Pu J, Yuan D, Yang H, Xing B (2019) Vertical migration from surface soils to groundwater and source appointment of polycyclic aromatic hydrocarbons in epikarst spring systems, southwest China. Chemosphere 230:616. https://doi.org/10.1016/j.chemosphere.2019.05.007

    Article  CAS  PubMed  Google Scholar 

  8. Peluffo M, Rosso JA, Morelli IS, Mora VC (2018) Strategies for oxidation of PAHs in aged contaminated soil by batch reactors. Ecotoxicol Environ Saf 151:76. https://doi.org/10.1016/j.ecoenv.2017.12.067

    Article  CAS  PubMed  Google Scholar 

  9. Xie H, Liu H, Xie Y, Yang M, Guo S, Zhou Z, Xu H (2015) Fabrication of a novel immobilization system and its application for removal of anthracene from soil. Biochem Eng J 97:8. https://doi.org/10.1016/j.bej.2015.01.011

    Article  CAS  Google Scholar 

  10. Gray MR, Banerjee DK, Fedorak PM (1994) Biological remediation of anthracene-contaminated soil in rotating bioreactors. Appl Microbiol Biotechnol 40:933. https://doi.org/10.1007/BF00174002

    Article  CAS  Google Scholar 

  11. Lamichhane S, Krishna KCB, Sarukkalige R (2017) Surfactant-enhanced remediation of polycyclic aromatic hydrocarbons: a review. J Environ Manag 199:46. https://doi.org/10.1016/j.jenvman.2017.05.037

    Article  CAS  Google Scholar 

  12. Ajab H, Isa MH, Taqub A (2020) Eletrochemical oxidation using Ti/RuO2 anode for COD and PAHs removal from aqueous solution. Sust Mater Technol 26:e00225. https://doi.org/10.1016/j.susmat.2020.e00225

    Article  CAS  Google Scholar 

  13. Lai X, Ning X, Li JC, Zhang Y, Yuan Y (2020) Comparison of the Fe2+/H2O2 and Fe2+/PMS systems in simulated sludge: removal of PAHs, migration of elements and formation of chlorination by-products. J Hazard Mater 398:122826. https://doi.org/10.1016/j.jhazmat.2020.122826

    Article  CAS  PubMed  Google Scholar 

  14. Verâne J, Santos NCP, Silva VL, Almeida M, Oliveira OMC, Moreira ITA (2020) Phytoremediation of polycyclic aromatic hydrocarbons (PAHs) in mangroove sediments using Rhizophora mangle. Mar Pollut Bull 160:111687. https://doi.org/10.1016/j.marpolbul.2020.111687

    Article  CAS  PubMed  Google Scholar 

  15. Aydin S, Karaçay HA, Shahi A, Gökçe S, Ince B, Ince O (2017) Aerobic and anaerobic fungal metabolism and Omics insights for increasing polycyclic aromatic hydrocarbons biodegradation. Fungal Biol Rev 31:61. https://doi.org/10.1016/j.fbr.2016.12.001

    Article  Google Scholar 

  16. Mohan SV, Kisa T, Ohkuma T, Analy RA, Shimizu Y (2006) Bioremediation technologies for treatment of PAH-contaminated soil and strategies to enhance process efficiency. Rev Environ Sci Biotechnol 5:347. https://doi.org/10.1007/s11157-006-0004-1

    Article  CAS  Google Scholar 

  17. Pereira CS, Kelbert M, Daronch NA, Michels C, Oliveira D, Soares HM (2020) Potential of enzymatic process as an innovative technology to remove anticancer drugs in wastewater. Appl Microbiol Biotechnol 104:23. https://doi.org/10.1007/s00253-019-10229-y

    Article  CAS  PubMed  Google Scholar 

  18. Kelbert M, Pereira CS, Daronch NA, Cesca K, Michels C, Oliveira D, Soares HM (2020) Laccase na efficacious approach to remove anticancer drugs: a study of doxorubicin degradation, kinectic parameters, and toxicity assessment. J Hazard Mater . https://doi.org/10.1016/j.jhazmat.2020.124520

    Article  PubMed  Google Scholar 

  19. Bayramoglu G, Karagoz B, Arica MY (2018) Cyclic-carbonate functionalized polymer brushes on polymeric microspheres: immobilized laccase for degradation of endocrine disturbing compounds. J Ind Eng Chem 60:407. https://doi.org/10.1016/j.jiec.2017.11.028

    Article  CAS  Google Scholar 

  20. García-Morales R, García-García A, Orona-Navar C, Osma JF, Nigam KDP, Ornelas-Soto N (2018) Biotransformation of emerging pollutants in groundwater by laccase from P. sanguineus CS43 immobilized onto titania nanoparticles. J Environ Chem Eng 6:710. https://doi.org/10.1016/j.jece.2017.12.006

    Article  CAS  Google Scholar 

  21. Uhnáková B, Petricková A, Biedermann D, Homolka L, Vejvoda V, Bednár P, Papousková B, Sulc M, Martínková L (2009) Biodegradation of brominated aromatics by cultures and laccase of Trametes versicolor. Chemosphere 76:826. https://doi.org/10.1016/j.chemosphere.2009.04.016

    Article  CAS  PubMed  Google Scholar 

  22. Baldantoni D, Morelli R, Belino A, Prati MV, Alfani A, Nicola F (2017) Anthracene and benzo(a)pyrene degradation in soil is favoured by compost amendment: perspectives for a bioremediation approach. J Hazard Mater 339:395. https://doi.org/10.1016/j.jhazmat.2017.06.043

    Article  CAS  PubMed  Google Scholar 

  23. Haritash AK, Kaushik CP (2009) Biodegradation aspects of Polycyclic Aromatic Hydrocarbons (PAHs): a review. J Hazard Mater 169:1. https://doi.org/10.1016/j.jhazmat.2009.03.137

    Article  CAS  PubMed  Google Scholar 

  24. Pang R, Li M, Zhang C (2015) Degradation of Phenolic compounds by laccase immobilizes on carbon nanomaterials: diffusional limitation investigation. Talanta 131:38. https://doi.org/10.1016/j.talanta.2014.07.045

    Article  CAS  PubMed  Google Scholar 

  25. Collins PJ, Kotterman MJJ, Field JA, Dobson ADW (1996) Oxidation of anthracene and benzo[a]pyrene by laccases from Trametes versicolor. Appl Environ Microbiol 62:4563. https://doi.org/10.1128/AEM.62.12.4563-4567.1996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Johannes C, Majcherczyk A, Hüttermann A (1996) Degradation of anthracene by laccase of Trametes versicolor in the presence of different mediator compounds. Appl Microbiol Biotechnol 46:313. https://doi.org/10.1007/s002530050823

    Article  CAS  PubMed  Google Scholar 

  27. Li X, Cheng WuY, Feng Y, Liu W, Lin X (2014) Influencing factors and product toxicity of anthracene oxidation by fungal laccase. Pedosphere 24:359. https://doi.org/10.1016/S1002-0160(14)60022-9

    Article  CAS  Google Scholar 

  28. Wu Y, Teng Y, Li Z, Liao X, Luo Y (2008) Potential role of polycyclic aromatic hydrocarbons (PAHs) oxidation by fungal laccase in the remediation of an aged contaminated soil. Soil Biol Biochem 40:789. https://doi.org/10.1016/j.soilbio.2007.10.013

    Article  CAS  Google Scholar 

  29. Majcherczyk A, Johannes C, Hüttermann A (1998) Oxidation of polycyclic aromatic hydrocarbons (PAH) by laccase of Trametes versicolor. Enzyme Microb Tech 22:335. https://doi.org/10.1016/S0141-0229(97)00199-3

    Article  CAS  Google Scholar 

  30. Adeniji AO, Okoh OO, Okoh AI (2019) Levels of polycyclic aromatic hydrocarbons in the water and sediment of buffalo river estuary, south africa and their health risk assessment. Arch Environ Con Tox 76:657. https://doi.org/10.1007/s00244-019-00617-w

    Article  CAS  Google Scholar 

  31. Li J, Li F, Liu Q (2017) PAHs behavior in surface water and groundwater of the Yellow River estuary: evidence from isotopes and hydrochemistry. Chemosphere 178:143. https://doi.org/10.1016/j.chemosphere.2017.03.052

    Article  CAS  PubMed  Google Scholar 

  32. Bautista LF, Morales G, Sanz R (2010) Immobilization strategies for laccase from Trametes versicolor on mesostructured silica materials and the application to the degradation of naphthalene. Bioresour Technol 101:8541. https://doi.org/10.1016/j.biortech.2010.06.042

    Article  CAS  Google Scholar 

  33. Kim J, Grate JW, Wang P (2006) Nanostructures for enzyme stabilization. Chem Eng Sci 61:1017. https://doi.org/10.1016/j.ces.2005.05.067

    Article  CAS  Google Scholar 

  34. Dodor DE, Hwang H, Ekunwe SIN (2004) Oxidation of anthracene and benzo[a]pyrene by immobilized laccase from Trametes versicolor. Enzyme Microb Tech 35:210. https://doi.org/10.1016/j.enzmictec.2004.04.007

    Article  CAS  Google Scholar 

  35. Bautista LF, Moralez G, Sanz R (2015) Immobilization strategies for laccase from Trametes versicolor on mesostructured silica materials and the application to the degradation of naphthalene. Chemosphere 136:273. https://doi.org/10.1016/j.biortech.2010.06.042

    Article  CAS  PubMed  Google Scholar 

  36. Hu X, Wang P, Hwang H (2009) Oxidation of anthracene by immobilized laccase from Trametes versicolor. Bioresour Technol 100:4963. https://doi.org/10.1016/j.biortech.2009.03.089

    Article  CAS  PubMed  Google Scholar 

  37. Catapane M, Nicolucci C, Menale C, Mita L, Rossi S, Mita DG, Diano N (2013) Enzymatic removal of estrogenic activity of nonylphenol and octylphenol aqueous solutions by immobilized laccase from Trametes versicolor. J Hazard Mater 248–249:337. https://doi.org/10.1016/j.jhazmat.2013.01.031

    Article  CAS  PubMed  Google Scholar 

  38. Bresolin D, Estrella AS, Silva JRP, Valerio A, Sayer C, Araújo PHH, Oliveira D (2019) Synthesis of a green polyurethane foam from a biopolyol obtained by enzymatic glycerolysis and its use for immobilization of lipase NS-40116. Bioproc Biosyst Eng 42:213. https://doi.org/10.1007/s00449-018-2026-9

    Article  CAS  Google Scholar 

  39. Nyari NLD, Fernandes IA, Bustamante-Vargas CE, Steffens C, Oliveira D, Zeni J, Rigo E, Dallago RM (2016) In situ immobilization of Candida antarctica B lipase in polyurethane foam support. J Mol Catal B 124:52. https://doi.org/10.1016/j.molcatb.2015.12.003

    Article  CAS  Google Scholar 

  40. Stenholm A, Hedeland M, Arvidsson T, Pettersson CE (2020) Removal of nonylphenol polyethoxylates by adsorption on polyurethane foam and biodegradation using immobilized Trametes versicolor. Sci Total Environ 724:138159. https://doi.org/10.1016/j.scitotenv.2020.138159

    Article  CAS  PubMed  Google Scholar 

  41. Daronch NA (2020) Polyurethane Foam as Matrix for One-Step Laccase Immobilization. Federal University Of Santa Catarina [dissertation], Florianópolis, Brazil: https://repositorio.ufsc.br/bitstream/handle/123456789/216319/PENQ0877-D.pdf?sequence=-1&isAllowed=y. Accessed 12 Aug 2020

  42. Rahmani K, Faramarzi MA, Mahvi AH, Gholami M, Esrafili A, Forootanfar H, Farzadkia M (2015) Elimination and detoxification of sulfathiazole and sulfamethoxazole assisted by laccase immobilized on porous silica beads. Int Biodeterior Biodegrad 97:107. https://doi.org/10.1016/j.ibiod.2014.10.018

    Article  CAS  Google Scholar 

  43. Childs RE, Bardsley WG (1975) The steady state kinetics of peroxidase with 2,2’ azino di (3 ethylbenzthiazoline 6 sulphonic acid) as chromogen. Biochem J 145:93. https://doi.org/10.1042/bj1450093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Perini BLB, Bitencourt RL, Daronch NA, Schneider ALS, Oliveira D (2020) Surfactant-enhanced in-situ enzymatic oxidation: a bioremediation strategy for oxidation of polycyclic aromatic hydrocarbons in contaminated soils and aquifers. J Environ Chem Eng 8:104013. https://doi.org/10.1016/j.jece.2020.104013

    Article  CAS  Google Scholar 

  45. Koo I, Kim S, Zhang X (2013) Comparative analysis of mass spectral matching-based compound identification in gas chromatography-mass spectrometry. J Chromatogr A 1298:132. https://doi.org/10.1016/j.chroma.2013.05.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Xu P, Du H, Peng X, Tang Y, Zhou Y, Chen X, Fei J, Meng Y, Yuan L (2020) Degradation of several polycyclic aromatic hydrocarbons by laccase in reverse micelle system. Sci Total Environ 708:134970. https://doi.org/10.1016/j.scitotenv.2019.134970

    Article  CAS  PubMed  Google Scholar 

  47. Niu J, Dai Y, Guo H, Xu J, Shen Z (2013) Adsorption and transformation of PAHs from water by a laccase-loading spider-type reactor. J Hazard Mater 248–249:254. https://doi.org/10.1016/j.jhazmat.2013.01.017

    Article  CAS  PubMed  Google Scholar 

  48. Rao MA, Scelza R, Acevedo F, Diez MC, Gianfreda L (2014) Enzymes as useful tools for environmental purposes. Chemosphere 107:145. https://doi.org/10.1016/j.chemosphere.2013.12.059

    Article  CAS  PubMed  Google Scholar 

  49. Board Decision 045/2014/E/C/I, Provides for the approval of the Guiding Values for Soils and Groundwater in the State of São Paulo (2014) São Paulo State Environment Agency (CETESB), São Paulo, Brazil. https://cetesb.sp.gov.br/solo/wp-content/uploads/sites/18/2014/12/DD-045-2014-P53.pdf. Accessed 5 Mai 2020

  50. Guidelines for Assessing and Managing Contaminated Gasworks Sites in New Zealand (1997) Ministry for the Environment (NZME), Wellington, New Zealand. https://www.mfe.govt.nz/sites/default/files/gas-guide-aug97-final.pdf. Accessed 12 July 2020

  51. Quin W, Fan F, Zhu Y, Huang X, Ding A, Liu X, Dou J (2018) Anaerobic biodegradation of benzo(a)pyrene by a novel Cellulosimicrobium cellulans CWS2 isolated from polycyclic aromatic hydrocarbon-contaminated soil. Braz J Microbiol 49:258. https://doi.org/10.1016/j.bjm.2017.04.014

    Article  CAS  Google Scholar 

  52. Arca-Ramos A, Eibes G, Feijoo G, Lema JM, Moreira MT (2015) Coupling extraction and enzyme catalysis for the removal of anthracene present in polluted soils. Chem Eng J 93:289. https://doi.org/10.1016/j.bej.2014.10.015

    Article  CAS  Google Scholar 

  53. Swaathy S, Kavitha V, Pravin AS, Mandal AB, Gnanamani A (2014) Microbial surfactant mediated degradation of anthracene in aqueous phase by marine Bacillus licheniformis MTCC 5514. Biotechnol Rep 4:161. https://doi.org/10.1016/j.btre.2014.10.004

    Article  Google Scholar 

  54. Tarafdar A, Sinha A, Masto RE (2017) Biodegradation of anthracene by a newly isolated bacterial strain, Bacillus thuringiensis AT.ISM.1, isolated from a fly ash deposition site. Lett Appl Microbiol 65:327. https://doi.org/10.1111/lam.12785

    Article  CAS  PubMed  Google Scholar 

  55. Abo-State MA, Saleh Y, Partila AM (2013) Identification of polycyclic aromatic hydrocarbon degrading bacterial strain and its ability to degrade pyrene. World Appl Sci J 23:515. https://doi.org/10.5829/idosi.wasj.2013.23.04.13078

    Article  CAS  Google Scholar 

  56. Partila AM, Mohammed MR (2019) Evaluation of the benzo[a]anthracene biodegradation by animal bioassays. Bull Natl Res Cent 43:72. https://doi.org/10.1186/s42269-019-0115-9

    Article  Google Scholar 

  57. Daronch NA, Kelbert M, Pereira CS, Araújo PHH, Oliveira D (2020) Elucidating the choice for a precise matrix for laccase immobilization: a review. Chem Eng J 397:125506. https://doi.org/10.1016/j.cej.2020.125506

    Article  CAS  Google Scholar 

  58. Zeng Y, Hong PKA, Wavrek DA (2000) Integrated chemical-biological treatment of benzo[a]pyrene. Environ Sci Technol 34:854. https://doi.org/10.1021/es990817w

    Article  CAS  Google Scholar 

  59. Dutch Target and Intervention Values (2000) Ministry of Housing, Spatial Planning and the Environment (VROM), The Hague, Netherlands. https://www.esdat.net/environmental%20standards/dutch/annexs_i2000dutch%20environmental%20standards.pdf. Accessed 21 July 2020

  60. Towards Setting Guideline Values for the Protection of Groundwater in Ireland (2003) Environment Protection Agency (EPA) Wexford, Ireland. https://www.epa.ie/pubs/reports/water/ground/EPA_ground_water_ guideline_values_interim_report.pdf. Accessed 12 July 2020

  61. Valderrama C, Alessandri R, Aunola T, Cortina JL, Gamisans X, Tuhkanen T (2009) Oxidation by Fenton’s reagent combined with biological treatment applied to a creosote-contaminated soil. J Hazard Mater 166:594. https://doi.org/10.1016/j.jhazmat.2008.11.108

    Article  CAS  PubMed  Google Scholar 

  62. Barry E, Mane AU, Libera JA, Elam JW, Darling SB (2017) Advanced oil sorbents using sequential infiltration synthesis. J Mater Chem A 5:2929. https://doi.org/10.1039/C6TA09014A

    Article  CAS  Google Scholar 

  63. Frescura LM, Pereira HA, Silva FV Jr, Menezes BB, Hilgemman M, Lazzaretti AP Jr (2018) A comparative study between high density polyethylene, polyurethane foam and amberlite XAD-2 in the removal of different PAHs. Polycycl Aromat Comp. https://doi.org/10.1080/10406638.2018.1545680

    Article  Google Scholar 

  64. Liang S, Neisius M, Mispreuve H, Naescher R, Gaan S (2012) Flame retardancy and thermal decomposition of flexible polyurethane foams: structural influence of organophosphorus compounds. Polym Degrad Stabil 97:2428. https://doi.org/10.1016/j.polymdegradstab.2012.07.019

    Article  CAS  Google Scholar 

  65. Duan H, Yu D, Zuo J, Yang B, Zhang Y, Niu Y (2016) Characterization of brominated flame retardants in construction and demolition waste components: HBCD and PBDEs. Sci Total Environ 572:77. https://doi.org/10.1016/j.scitotenv.2016.07.165

    Article  CAS  PubMed  Google Scholar 

  66. Stancin H, Ruzicková J, Mikulcic H, Raclavská H, Kucbel M, Wang X, Duic N (2019) Experimental analysis of waste polyurethane from household appliances and its utilization possibilities. J Environ Manag 243:105. https://doi.org/10.1016/j.jenvman.2019.04.112

    Article  CAS  Google Scholar 

  67. Cho S, Park SJ, Lim J, Rhee YH, Shin K (2002) Oxidation of polycyclic aromatic hydrocarbons by laccase of Coriolus hirsutus. Biotechnol Lett 24:1337. https://doi.org/10.1023/A:1019896316366

    Article  CAS  Google Scholar 

  68. Koschorreck K, Richter SM, Swierczek A, Beifuss U, Schmid RD, Urlacher VB (2008) Comparative characterization of four laccases from Trametes versicolor concerning phenolic C-C coupling and oxidation of PAHs. Arch Biochem Biophys 474:213. https://doi.org/10.1016/j.abb.2008.03.009

    Article  CAS  PubMed  Google Scholar 

  69. Arca-Ramos A, Eibes G, Moreira MT, Feijoo G, Lema JM (2014) Vegetable oils as NAPLs in two phase partitioning bioreactors for the degradation of anthracene by laccase. Chem Eng J 240:281. https://doi.org/10.1016/j.cej.2013.11.076

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Brazilian Agency CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) for the financial support and to UNIVILLE-Universidade da Região de Joinville, where the experiments were carried out.

Author information

Authors and Affiliations

Authors

Contributions

BP, DO and AS conceived and designed research. BP and ND conducted experiments. RB contributed analytical tools. BP, CA and DO wrote the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Débora de Oliveira.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research Involving Human and Animal Rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perini, B.L.B., Daronch, N.A., Bitencourt, R.L. et al. Application of Immobilized Laccase on Polyurethane Foam for Ex-Situ Polycyclic Aromatic Hydrocarbons Bioremediation. J Polym Environ 29, 2200–2213 (2021). https://doi.org/10.1007/s10924-020-02035-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-020-02035-9

Keywords

Navigation