Skip to main content
Log in

Arabidopsis 3-Ketoacyl-CoA Synthase 4 is Essential for Root and Pollen Tube Growth

  • Research Article
  • Published:
Journal of Plant Biology Aims and scope Submit manuscript

Abstract

Very long-chain fatty acids (VLCFAs) are essential precursors of membrane lipids, such as phospholipids and sphingolipids, cuticular waxes, suberins, and Brassica seed oils. The first step of VLCFA synthesis is mediated by 3-ketoacyl-CoA synthase (KCS), which catalyzes the condensation of a C2 unit from malonyl-CoA to acyl-CoA. In the present study, we investigated the role of KCS4 in pollen tube and root growth. KCS4 was predominantly expressed in shoot and root apical meristems, leaf veins, mature and germinated pollen grains, and developing embryos. The fluorescent signals of KCS4 fused with enhanced yellow fluorescent protein (KCS4:eYFP) were detected in the endoplasmic reticulum of tobacco epidermis. KCS4 disruption inhibited pollen tube elongation and root growth, whereas KCS4 promoter-driven KCS4 expression rescued the growth-retarded phenotype to wild type (WT) in kcs4 complementation lines. Root growth assay of WT and kcs4 lines treated with metazachlor and mefluidide, which are specific KCS inhibitors, and fatty acid analysis of their roots and seeds revealed that KCS4 is involved in the elongation of longer than C24 VLCFAs, which are essential for root and pollen tube growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • An G (1987) Binary Ti vectors for plant transformation and promoter analysis. Methods Enzymol 153:292–305

    Article  CAS  Google Scholar 

  • Bach L, Michaelson LV, Haslam R, Bellec Y, Gissot L, Marion J, Da Costa M, Boutin JP, Miquel M, Tellier F, Domergue F, Markham JE, Beaudoin F, Napier JA, Faure JD (2008) The very-long-chain hydroxy fatty acyl-CoA dehydratase PASTICCINO2 is essential and limiting for plant development. Proc Natl Acad Sci USA 105:14727–14731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bach L, Gissot L, Marion J, Tellier F, Moreau P, Satiat-Jeunemaître B, Palauqui JC, Napier JA, Faure JD (2011) Very-long-chain fatty acids are required for cell plate formation during cytokinesis in Arabidopsis thaliana. J Cell Sci 124:3223–3234

    Article  CAS  PubMed  Google Scholar 

  • Beaudoin F, Wu X, Li F, Haslam RP, Markham JE, Zheng H, Napier JA, Kunst L (2009) Functional characterization of the Arabidopsis beta-ketoacyl-coenzyme A reductase candidates of the fatty acid elongase. Plant Physiol 150:1174–1191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bechtold N, Ellis J, Pelletier G (1993) In planta Agrobacterium mediated gene transfer by infiltration of adult Arabidopsis thaliana plants. C R Acad Sci Paris Life Sci 316:1194–1199

    CAS  Google Scholar 

  • Bieberich E (2018) Sphingolipids and lipid rafts: novel concepts and methods of analysis. Chem Phys Lipids 216:114–131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blacklock BJ, Jaworski JG (2006) Substrate specificity of Arabidopsis 3-ketoacyl-CoA synthases. Biochem Biophys Res Commun 346:583–590

    Article  CAS  PubMed  Google Scholar 

  • Brundrett MC, Kendtick B, Peterson CA (1990) Effective lipid staining in plant material with Sudan red 78 or Fluorol yellow O88 in polyethylene glycol-glycerol. Biotech Histochem 66:111–116

    Article  Google Scholar 

  • Cassagne C, Lessire R (1978) Biosynthesis of saturated very long chain fatty acids by purified membrane fractions from leek epidermal cells. Arch Biochem Biophys 191:146–152

    Article  CAS  PubMed  Google Scholar 

  • Cassagne C, Lessire R, Bessoule JJ, Moreau P, Creach A, Schneider F, Sturbois B (1994) Biosynthesis of very long chain fatty acids in higher plants. Prog Lipid Res 33:55–69

    Article  CAS  PubMed  Google Scholar 

  • Cernac A, Benning C (2004) WRINKLED1 encodes an AP2/EREB domain protein involved in the control of storage compound biosynthesis in Arabidopsis. Plant J 40:575–585

    Article  CAS  PubMed  Google Scholar 

  • Chae K, Kieslich CA, Morikis D, Kim SC, Lord EM (2009) A gain-of-function mutation of Arabidopsis lipid transfer protein 5 disturbs pollen tube tip growth and fertilization. Plant Cell 21:3902–3914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Devaiah SP, Roth MR, Baughman E, Li M, Tamura P, Jeannotte R, Welti R, Wang X (2006) Quantitative profiling of polar glycerolipid species from organs of wild-type Arabidopsis and a PHOSPHOLIPASE Dα1 knockout mutant. Phytochemistry 67:1907–1924

    Article  CAS  PubMed  Google Scholar 

  • Fan LM, Wang YF, Wang H, Wu WH (2001) In vitro Arabidopsis pollen germination and characterization of the inward potassium currents in Arabidopsis pollen grain protoplasts. J Exp Bot 52:1603–1614

    Article  CAS  PubMed  Google Scholar 

  • Fiebig A, Mayfield JA, Miley NL, Chau S, Fischer RL, Preuss D (2000) Alterations in CER6, a gene identical to CUT1, differentially affect long-chain lipid content on the surface of pollen and stems. Plant Cell 12:2001–2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franke R, Briesen I, Wojciechowski T, Faust A, Yephremov A, Nawrath C, Schreiber L (2005) Apoplastic polyesters in Arabidopsis surface tissues-a typical suberin and a particular cutin. Phytochemistry 66:2643–2658

    Article  CAS  PubMed  Google Scholar 

  • Franke R, Hofer R, Briesen I, Emsermann M, Efremova N, Yephremov A, Schreiber L (2009) The DAISY gene from Arabidopsis encodes a fatty acid elongase condensing enzyme involved in the biosynthesis of aliphatic suberin in roots and the chalaza-micropyle region of seeds. Plant J 57:80–95

    Article  CAS  PubMed  Google Scholar 

  • Grebnev G, Ntefidou M, Kost B (2017) Secretion and endocytosis in pollen tubes: models of tip growth in the spot light. Front Plant Sci 8:154

    Article  PubMed  PubMed Central  Google Scholar 

  • Grennan AK (2007) Lipid rafts in plants. Plant Physiol 143:1083–1085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hajdukiewicz P, Svab Z, Maliga P (1994) The small, versatile pPZP family of Agrobacterium binary vectors for plant transformation. Plant Mol Biol 25:989–994

    Article  CAS  PubMed  Google Scholar 

  • Haslam TM, Mañas-Fernández A, Zhao L, Kunst L (2012) Arabidopsis ECERIFERUM2 is a component of the fatty acid elongation machinery required for fatty acid extension to exceptional lengths. Plant Physiol 160:1164–1174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haslam TM, Haslam R, Thoraval D, Pascal S, Delude C, Domergue F, Fernández AM, Beaudoin F, Napier JA, Kunst L, Joubès J (2015) ECERIFERUM2-LIKE proteins have unique biochemical and physiological functions in very-long-chain fatty acid elongation. Plant Physiol 167:682–692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hegebarth D, Buschhaus C, Joubès J, Thoraval D, Bird D, Jetter R (2017) Arabidopsis ketoacyl-CoA synthase 16 (KCS16) forms C36/C38 acyl precursors for leaf trichome and pavement surface wax. Plant Cell Environ 40:1761–1776

    Article  CAS  PubMed  Google Scholar 

  • Honys D, Twell D (2004) Transcriptome analysis of haploid male gametophyte development in Arabidopsis. Genome Biol 5:R85

    Article  PubMed  PubMed Central  Google Scholar 

  • Hooker TS, Millar AA, Kunst L (2002) Significance of the expression of the CER6 condensing enzyme for cuticular wax production in Arabidopsis. Plant Physiol 129:1568–1580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • James DW, Lim E, Keller J, Plooy L, Ralston E, Dooner HK (1995) Directed tagging of the Arabidopsis FATTY ACID ELONGATION1 (FAE1) gene with the maize transposon activator. Plant Cell 7:309–319

    CAS  PubMed  PubMed Central  Google Scholar 

  • Joubès J, Raffaele S, Bourdenx B, Garcia C, Laroche-Traineau J, Moreau P, Domergue F, Lessire R (2008) The VLCFA elongase gene family in Arabidopsis thaliana: phylogenetic analysis, 3D modelling and expression profiling. Plant Mol Biol 67:547–566

    Article  PubMed  Google Scholar 

  • Jung JH, Kim H, Go YS, Lee SB, Hur CG, Kim HU, Suh MC (2011) Identification of functional BrFAD2-1 gene encoding microsomal delta-12 fatty acid desaturase from Brassica rapa and development of Brassica napus containing high oleic acid contents. Plant Cell Rep 30:1881–1892

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Jung JH, Lee SB, Go YS, Kim HJ, Cahoon R, Markham JE, Cahoon EB, Suh MC (2013) Arabidopsis 3-ketoacyl-coenzyme A synthase9 is involved in the synthesis of tetracosanoic acids as precursors of cuticular waxes, suberins, sphingolipids, and phospholipids. Plant Physiol 162:567–580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirkham M, Parton RG (2005) Clathrin-independent endocytosis: new insights into caveolae and non-caveolar lipid raft carriers. Biochim Biophys Acta 1745:273–286

    Article  CAS  PubMed  Google Scholar 

  • Kunst L, Samuels AL (2003) Biosynthesis and secretion of plant cuticular wax. Prog Lipid Res 42:51–80

    Article  CAS  PubMed  Google Scholar 

  • Lee SB, Jung SJ, Go YS, Kim HU, Kim JK, Cho HJ, Park OK, Suh MC (2009) Two Arabidopsis 3-ketoacyl CoA synthase genes, KCS20 and KCS2/DAISY, are functionally redundant in cuticular wax and root suberin biosynthesis, but differentially controlled by osmotic stress. Plant J 60:462–475

    Article  CAS  PubMed  Google Scholar 

  • Li-Beisson Y, Shorrosh B, Beisson F, Andersson MX, Arondel V, Bates PD, Baud S, Bird D, Debono A, Durrett TP, Franke RB, Graham IA, Katayama K, Kelly AA, Larson T, Markham JE, Miquel M, Molina I, Nishida I, Rowland O, Samuels L, Schmid KM, Wada H, Welti R, Xu C, Zallot R, Ohlrogge J (2013) Acyl-lipid metabolism. Arabidopsis Book 11:e0161

    Article  PubMed  PubMed Central  Google Scholar 

  • Markham JE, Jaworski JG (2007) Rapid measurement of sphingolipids from Arabidopsis thaliana by reversed-phase high-performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry. Rapid Commun Mass Spectrom 21:1304–1314

    Article  CAS  PubMed  Google Scholar 

  • Markham JE, Molino D, Gissot L, Bellec Y, Hématy K, Marion J, Belcram K, Palauqui JC, Satiat-Jeunemaitre B, Faure JD (2011) Sphingolipids containing very-long-chain fatty acids define a secretory pathway for specific polar plasma membrane protein targeting in Arabidopsis. Plant Cell 23:2362–2378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCartney AW, Dyer JM, Dhanoa PK, Kim PK, Andrews DW, McNew JA, Mullen RT (2004) Membrane-bound fatty acid desaturases are inserted co-translationally into the ER and contain different ER retrieval motifs at their carboxy termini. Plant J 37:156–173

    Article  CAS  PubMed  Google Scholar 

  • Millar AA, Clemens S, Zachgo S, Giblin EM, Taylor DC, Kunst L (1999) CUT1, an Arabidopsis gene required for cuticular wax biosynthesis and pollen fertility, encodes a very-long-chain fatty acid condensing enzyme. Plant Cell 11:825–838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mori T, Kuroiwa H, Higashiyama T, Kuroiwa T (2006) Generative Cell Specific 1 is essential for angiosperm fertilization. Nat Cell Biol 8:64–71

    Article  CAS  PubMed  Google Scholar 

  • Moscatelli A, Gagliardi A, Maneta-Peyret L, Bini L, Stroppa N, Onelli E, Landi C, Scali M, Idilli AI, Moreau P (2015) Characterisation of detergent-insoluble membranes in pollen tubes of Nicotiana tabacum (L.). Biol Open 4:378–399

    Article  PubMed  PubMed Central  Google Scholar 

  • Murata N, Sato N, Takahashi N (1984) Very-long-chain saturated fatty acids in phosphatidiylserine from higher plant tissues. Biochim Biophys Acta 795:147–150

    Article  CAS  Google Scholar 

  • Pascal S, Bernard A, Sorel M, Pervent M, Vile D, Haslam RP, Napier JA, Lessire R, Domergue F, Joubès J (2013) The Arabidopsis cer26 mutant, like the cer2 mutant, is specifically affected in the very long chain fatty acid elongation process. Plant J 73:733–746

    Article  CAS  PubMed  Google Scholar 

  • Regan SM, Moffatt BA (1990) Cytochemical analysis of pollen development in wild-type Arabidopsis and a male-sterile mutant. Plant Cell 2:877–889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roudier F, Gissot L, Beaudoin F, Haslam R, Michaelson L, Marion J, Molino D, Lima A, Bach L, Morin H (2010) Very-long-chain fatty acids are involved in polar auxin transport and developmental patterning in Arabidopsis. Plant Cell 22:364–375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanders PM, Bui AQ, Weterings K, McIntire KN, Hsu YC, Lee PY, Truong MT, Beals TP, Goldberg RB (1999) Anther developmental defects in Arabidopsis thaliana male-sterile mutants. Sex Plant Reprod 11:297–322

    Article  CAS  Google Scholar 

  • Smyth DR, Bowman JL, Meyerowitz EM (1990) Early flower development in Arabidopsis. Plant Cell 2:755–767

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tresch S, Heilmann M, Christiansen N, Looser R, Grossmann K (2012) Inhibition of saturated very-long-chain fatty acid biosynthesis by mefluidide and perfluidone, selective inhibitors of 3-ketoacyl-CoA synthases. Phytochemistry 76:162–171

    Article  CAS  PubMed  Google Scholar 

  • Wattelet-Boyer V, Brocard L, Jonsson K, Esnay N, Joubès J, Domergue F, Mongrand S, Raikhel N, Bhalerao RP, Moreau P, Boutté Y (2016) Enrichment of hydroxylated C24- and C26-acyl-chain sphingolipids mediates PIN2 apical sorting at trans-Golgi network subdomains. Nat Commun 7:12788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winter D, Vinegar B, Nahal H, Ammar R, Wilson GV, Provart NJ (2007) An “Electronic Fluorescent Pictograph” browser for exploring and analyzing large-scale biological data sets. PLoS ONE 2:e718

    Article  PubMed  PubMed Central  Google Scholar 

  • Yephremov A, Wisman E, Huijser P, Huijser C, Wellesen K, Saedler H (1999) Characterization of the FIDDLEHEAD gene of Arabidopsis reveals a link between adhesion response and cell differentiation in the epidermis. Plant Cell 11:2187–2201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng H, Rowland O, Kunst L (2005) Disruptions of the Arabidopsis enoyl-CoA reductase gene reveal an essential role for very-long-chain fatty acid synthesis in cell expansion during plant morphogenesis. Plant Cell 17:1467–1481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Research Foundation (NRF-2019R1A2B5B02070204) of South Korea and the New Breeding Technologies Development Program (Project No. PJ014781022020) of the Rural Development Administration, South Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mi Chung Suh.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 18 KB)

Supplementary Fig. S1

Microarray analysis of mature (A) (Winter et al. 2007) and developing (B) pollen grains (Honys and Twell 2004) of 21 KCS isoforms. Dataset is derived from eFP-browser (https://bar.utoronto.ca/efp/cgi-bin/efpWeb.cgi)(JPEG 64 KB)

Supplementary Fig. S2

Alexander staining in WT and kcs4 anthers. Whole flowers were submerged into Alexander staining solution for 20 min. The stained samples were washed with distilled water, and then anthers were photographed with under a light stereomicroscope (SteREO Lumar V12, Carl Zeiss) (JPG 55 KB)

Supplementary Fig. S3

Semi-thin section of WT and kcs4 anthers during pollen development. Open flowers of 6-week-old plants were tagged daily for 7 days. Flowers and buds were fixed and then embedded in Spurr resin. After obtaining semi-thin section, pollen developmental stages were divided as described previously (Smyth et al. 1990). Images were obtained with a AxioCam MRc5 camera coupled to a light stereomicroscope (SteREO Lumar V12, Carl Zeiss). Msp microspores, T tapetum layer, E epidermis, En endodermis, PG pollen grain, C connective, Fb fibrous bands, St stomium. Bars = 100 µm (JPG 212 KB)

Supplementary Fig. S4

Staining of mature WT and kcs4 pollens with Fluorol yellow 088. Mature pollens were incubated with 0.01 % (w/v) Fluorol yellow in 100% ethanol for 5–10 min, washed with distilled water, and then visualized under a microscope with fluorescent (A) and UV (B) light as described in Brundrett et al. (1990) and Regan and Moffatt (1990). A Bars = 10 µm. B Arrows indicate the pollen surface (JPG 69 KB)

Supplementary Fig. S5

Composition (A) and levels (B) of suberin monomers in WT and kcs4 roots. Roots of 2-week-old seedlings were harvested and delipidated. Completely dried root residues were depolymerized and acetylated according to a previously reported method (Li-Beisson et al. 2013). Composition and levels of suberin monomers were analyzed and quantified by GC-MS and GC-FID. Student’s t-test was used for statistical analysis between WT and kcs4 (n = 4) (JPG 82 KB)

Supplementary Fig. S6

Cuticular wax composition (A) and levels (B) in WT and kcs4 stems. Cuticular waxes were extracted from the stems of 5-week-old plants using chloroform. The levels and composition of cuticular waxes were analyzed by GC-MS and GC-FID. Student’s t test was used for statistical analysis between WT and kcs4 (n = 3) (JPG 60 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J., Lee, S.B. & Suh, M.C. Arabidopsis 3-Ketoacyl-CoA Synthase 4 is Essential for Root and Pollen Tube Growth. J. Plant Biol. 64, 155–165 (2021). https://doi.org/10.1007/s12374-020-09288-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12374-020-09288-w

Keywords

Navigation