Skip to main content
Log in

Investigation of Microwave and Thermal Processing of Electrode Material of End-of-Life Ni-MH Battery

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Ni-metal hydride (NiMH) batteries should be recycled, as they contain base metals (Ni, Co) and rare earth elements (La, Ce). In this study, thermal and microwave treatments are investigated as a pre-treatment method for decomposing electrode material (Ni(OH)2 and LaNi5). The kinetic analysis of thermal decomposition electrode material yields the activation energy of 41.3 kJ/mol. The maximum percentage of lanthanum nickel oxide phase and cerium oxide phase is obtained at 1000°C of thermal treatment and 15 min of microwave exposure. The formation of melted balls of Ni and its oxide (Ni ~ 72.8%) was observed in microwave exposure, and the tendency of ball formation decreased with increasing exposure time. The effect of microwave exposure and thermal treatment on the acid leaching (1 M HCl, at S/L-1:20, at 70°C for 2 h) was studied. The leaching results showed NiO and CeO2 phases in the leach residue of thermal and microwave treated products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. P. Zhang, T. Yokoyama, O. Itabashi, Y. Wakui, T.M. Suzuki, and K. Inoue, Hydrometallurgy 50, 61 (1998).

    Article  Google Scholar 

  2. P. Meshram, B.D. Pandey, and T.R. Mankhand, Waste Manag. 51, 196 (2016).

    Article  Google Scholar 

  3. K. Binnemans, P.T. Jones, B. Blanpain, T. Van Gerven, Y. Yang, A. Walton, and M. Buchert, J. Clean. Prod. 51, 1 (2013).

    Article  Google Scholar 

  4. L. Li, S. Xu, Z. Ju, and F. Wu, Hydrometallurgy 100, 41 (2009).

    Article  Google Scholar 

  5. S. Maroufi, R.K. Nekouei, R. Hossain, M. Assefi, and V. Sahajwalla, ACS Sustain. Chem. Eng. 6, 11811 (2018).

    Article  Google Scholar 

  6. K. Provazi, B.A. Campos, D.C.R. Espinosa, and J.A.S. Tenório, Waste Manag. 31, 59 (2011).

    Article  Google Scholar 

  7. K. Young and J. Nei, Materials (Basel) 6, 4574 (2013).

    Article  Google Scholar 

  8. V. Innocenzi, N.M. Ippolito, I. De Michelis, M. Prisciandaro, F. Medici, and F. Vegliò, J. Power Sources 362, 202 (2017).

    Article  Google Scholar 

  9. United States Geological Survey (USGS), Mineral Commodity Summaries 2020 (2020).

  10. P. Meshram, H. Somani, B.D. Pandey, T.R. Mankhand, and H. Deveci, J. Clean. Prod. 157, 322 (2017).

    Article  Google Scholar 

  11. B. Ebin, J. Inorg. Organomet. Polym Mater. 28, 2554 (2018).

    Article  Google Scholar 

  12. V. Agarwal, M.K. Khalid, A. Porvali, B.P. Wilson, and M. Lundström, Sustain. Mater. Technol. 22, e00121 (2019).

    Google Scholar 

  13. T. Müller and B. Friedrich, J. Power Sources 158, 1498 (2006).

    Article  Google Scholar 

  14. S. Al-Thyabat, T. Nakamura, E. Shibata, and A. Iizuka, Miner. Eng. 45, 4 (2013).

    Article  Google Scholar 

  15. A. Porvali, B.P. Wilson, and M. Lundström, Waste Manag. 71, 381 (2018).

    Article  Google Scholar 

  16. K. Tang, A. Ciftja, A.M. Martinez, C. van der Eijk, Y. Bian, S. Guo, and W. Ding, Proceedings of the First International Symposium on Development of Rare Earths, Baotou, China 8 (2014).

  17. P.R. Behera, R. Farzana, and V. Sahajwalla, J. Clean. Prod. 249, 119407 (2020).

    Article  Google Scholar 

  18. R. Farzana, K. Hassan, W. Wang, and V. Sahajwalla, J. Environ. Manag. 234, 145 (2019).

    Article  Google Scholar 

  19. E.H. Tanabe, D.F. Schlemmer, M.L. Aguiar, G.L. Dotto, and D.A. Bertuol, J. Environ. Manag. 171, 177 (2016).

    Article  Google Scholar 

  20. B. Ebin, M. Petranikova, and C. Ekberg, J. Mater. Cycles Waste Manag. 20, 2018 (2018).

    Article  Google Scholar 

  21. K. Korkmaz, M. Alemrajabi, Å. Rasmuson, and K. Forsberg, J. Sustain. Metall. 4, 313 (2018).

    Article  Google Scholar 

  22. P. Zhang, T. Yokoyama, O. Itabashi, Y. Wakui, T.M. Suzuki, and K. Inoue, J. Power Sources 77, 116 (1999).

    Article  Google Scholar 

  23. N. Tzanetakis and K. Scott, J. Chem. Technol. Biotechnol. 79, 919 (2004).

    Article  Google Scholar 

  24. D.A. Bertuol, A.M. Bernardes, and J.A.S. Tenório, J. Power Sources 193, 914 (2009).

    Article  Google Scholar 

  25. P. Meshram, B.D. Pandey, and T.R. Mankhand, Hydrometallurgy 158, 172 (2015).

    Article  Google Scholar 

  26. L. Pietrelli, B. Bellomo, D. Fontana, and M.R. Montereali, Hydrometallurgy 66, 135 (2002).

    Article  Google Scholar 

  27. S. Pindar and N. Dhawan, Sustain. Mater. Technol. 25, e00157 (2020).

    Google Scholar 

  28. Y. Huang, T. Zhang, Z. Dou, G. Lv, G. Han, and W. Peng, J. Rare Earths 37, 541 (2019).

    Article  Google Scholar 

  29. Y. Huang, T. Zhang, J. Liu, Z. Dou, and J. Tian, J. Rare Earths 34, 529 (2016).

    Article  Google Scholar 

  30. F. Maurel, B. Knosp, and M. Backhaus-Ricoult, J. Electrochem. Soc. 147, 78 (2000).

    Article  Google Scholar 

  31. U. Kumar, V. Gaikwad, and V. Sahajwalla, J. Clean. Prod. 192, 244 (2018).

    Article  Google Scholar 

  32. S. Pindar and N. Dhawan, J. Therm. Anal. Calorim. (2020). https://doi.org/10.1007/s10973-020-10139-6.

    Article  Google Scholar 

  33. X. Yang, J. Zhang, and X. Fang, J. Hazard. Mater. 279, 384 (2014).

    Article  Google Scholar 

  34. C.A. Pickles, Miner. Eng. 22, 1112 (2009).

    Article  Google Scholar 

  35. E.R. Bobicki, C.A. Pickles, J. Forster, O. Marzoughi, and R. Hutcheon, Miner. Eng. 145, 106055 (2020).

    Article  Google Scholar 

  36. J. Chaouki, S. Farag, M. Attia, and J. Doucet, Can. J. Chem. Eng. 98, 832 (2020).

    Article  Google Scholar 

  37. L. Nie, J. Wang, and Q. Tan, Catal. Commun. 97, 1 (2017).

    Article  Google Scholar 

  38. N. Wang, Q. Zhang, P. Zhao, M. Yao, W. Hu, and S. Komarneni, Ceram. Int. 43, 5687 (2017).

    Article  Google Scholar 

  39. N. Shukla and N. Dhawan, Process Saf. Environ. 142, 238 (2020).

    Article  Google Scholar 

  40. L. Tifouti, N. Habbache, and S. Djerad, Process Eng. J. 1, 59 (2017).

    Google Scholar 

  41. P. Fleming, R.A. Farrell, J.D. Holmes, and M.A. Morris, J. Am. Ceram. Soc. 93, 1187 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Indian Institute of Technology, Roorkee, for providing Faculty Initiation Grant funds via FIG-100714, and Mr. Sanjay Pindar for calculation work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikhil Dhawan.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mir, S., Shukla, N. & Dhawan, N. Investigation of Microwave and Thermal Processing of Electrode Material of End-of-Life Ni-MH Battery. JOM 73, 951–961 (2021). https://doi.org/10.1007/s11837-020-04530-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-020-04530-9

Navigation