Skip to main content

Advertisement

Log in

Inverse Identification of Temperature-Dependent Thermal Conductivity for Charring Ablators

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Estimation of thermal conductivity of charring composite is a key issue for both design and optimization of an ablative thermal protection system. This paper presents a method for predicting temperature-dependent thermal conductivity of charring ablator using genetic algorithm and cubic spline interpolation, and a special ablative material composed of phenolic resin, glass fibers and quartz fibers is concerned. In this study, by considering the effects of pyrolysis, carbon–silica reaction, and the convective heat transfer between pyrolysis gas and charred layer, the ablative heat transfer model is developed to simulate the ablation process first. Then based on the measured temperature profiles and built model, the temperature-dependent thermal conductivity without prior information on the functional form is predicted which is parameterized by cubic spline. The predicted thermal conductivity curve is continuous and smooth everywhere, and the changes of the curve can reveal the ablation characteristic of the concerned material precisely. Consequently, the calculated temperature profiles using the predicted results show good agreement with experimental data. Also, the reliability of the prediction is discussed through analyzing the iterative process and the number of interpolation nodes. It is concluded that the improvement is limited through adding nodes when the thermal conductivity is already well defined by existing nodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

A :

Pre-exponential factor, s1

\({B}{^{\prime}}\) :

Non-dimensional mass flux

\({c}_{p}\) :

Specific heat capacity, J·kg−1·K−1

E :

Activation energy, J·mol−1

h :

Specific enthalpy, J·kg−1

k :

Thermal conductivity, W·m−1·K−1

\(\dot{m}\) :

Mass flux, kg·m−2·s−1

n :

Order of reaction

Q :

Reaction heat J·kg1

q :

Heat flux W·m2

R :

Ideal gas constant J·mol1·K1

St :

Stanton number

T :

Temperature, K

\({T}_{r}\) :

Reaction temperature, K

t :

Time, s

u :

Velocity, m·s−1

\({v}_{w}\) :

Surface ablation rate, m·s−1

x :

Stationary coordinate

α :

Absorptivity

ε :

Emissivity

ρ :

Density, kg·m−1

σ :

Stefan–Boltzmann constant, W·m−2·K−1

0 :

Initial status

c :

Fully charred

cond :

Conduction

conv :

Convection

e :

Boundary layer edge

f :

Final status

g :

Gas

i :

The ith reaction; the ith nodes

rad :

Radiation

w :

At the surface (wall)

References

  1. L. Steg, ARS J. 30, 815 (1960)

    Article  Google Scholar 

  2. H.L.N. Mcmanus, G.S. Springer, J. Compos. Mater. 26, 206 (1992)

    Article  ADS  Google Scholar 

  3. M. Natali, J.M. Kenny, L. Torre, Prog. Mater. Sci. 84, 192 (2016)

    Article  Google Scholar 

  4. M. Cui, Y. Zhao, B. Xu, S. Wang, X. Gao, Appl. Therm. Eng. 125, 480 (2017)

    Article  Google Scholar 

  5. T. Ngo, J.-H. Huang, and C.-C. Wang, Int. Commun. Heat Mass Transf. 71, (2015)

  6. M. Cui, X. Gao, J. Zhang, Int. J. Therm. Sci. 58, 113 (2012)

    Article  Google Scholar 

  7. Q. Zhang, S. Lippmann, A. Grasemann, M. Zhu, M. Rettenmayr, Int. J. Heat Mass Transf. 96, 242 (2016)

    Article  Google Scholar 

  8. C.-H. Huang, Y. Jan-Yuan, Int. J. Heat Mass Transf. 38, 3433 (1995)

    Article  Google Scholar 

  9. B. Sawaf, M.N. Ozisik, Y. Jarny, Int. J. Heat Mass Transf. 38, 3005 (1995)

    Article  Google Scholar 

  10. M. Mierzwiczak, J.A. Kołodziej, Int. J. Heat Mass Transf. 54, 790 (2011)

    Article  Google Scholar 

  11. T. Martin and G. Dulikravich, J. Heat Transf. Asme - J HEAT Transf. 122, (2000)

  12. S. Kim, Int. Commun. Heat Mass Transf. 28, 537 (2001)

    Article  Google Scholar 

  13. S. Kim, B.-J. Chung, M.C. Kim, K.Y. Kim, Numer. Heat Transf. Part A Appl. 44, 521 (2003)

    Article  ADS  Google Scholar 

  14. S. Kim, M.C. Kim, K.Y. Kim, Int. Commun. Heat Mass Transf. 29, 107 (2002)

    Article  Google Scholar 

  15. S. Kim, M.C. Kim, K.Y. Kim, Int. J. Heat Mass Transf. 46, 1801 (2003)

    Article  Google Scholar 

  16. B. Czél, G. Gróf, Int. J. Heat Mass Transf. 55, 4254 (2012)

    Article  Google Scholar 

  17. B. Czél, G. Gróf, Int. J. Thermophys. 33, 1023 (2012)

    Article  ADS  Google Scholar 

  18. A. Imani, A.A. Ranjbar, M. Esmkhani, Inverse Probl. Sci. Eng. 14, 767 (2006)

    Article  MathSciNet  Google Scholar 

  19. J. Zhou, Y. Zhang, J. Chen, and Z. Feng, J. Heat Transf. Asme - J HEAT Transf. 132, (2010)

  20. A. Hakkaki-Fard and F. Kowsary, Numer. Heat Transf. Part A: Applications, 543 (2008)

  21. O. Alifanov, Inverse Heat Transfer Problem (Springer, Berlin, 1994)

    Book  Google Scholar 

  22. H. Molavi, A. Hakkaki-Fard, I. Pourshaban, M. Fard, R. Rahmani, J. Thermophys. Heat Transf. 23, 50 (2009)

    Article  Google Scholar 

  23. X.-M. Wang, L.-S. Zhang, C. Yang, N. Liu, W.-L. Cheng, Int. J. Heat Mass Transf. 129, 894 (2019)

    Article  Google Scholar 

  24. H. Orlande, O. Fudym, M. Denis, and R. Cotta, Thermal Measurements and Inverse Techniques (2011)

  25. A.P. Mouritz, A.G. Gibson, Fire Properties of Polymer Composite Materials (Springer, Dordrecht, Netherlands, 2006), pp. 133–161

    Google Scholar 

  26. J. Henderson, M. Tant, Polym. Compos. 4, 233 (1983)

    Article  Google Scholar 

  27. J.R. Lachaud, T.E. Magin, I. Cozmuta, N.N. Mansour, 7th Aerothermodyn. Symp. 3 (2011)

  28. J. Henderson, J. Wiebelt, M. Tant, J. Compos. Mater. 19, 579 (1985)

    Article  ADS  Google Scholar 

  29. J. Lachaud, A. Martin, I. Cozmuta, and B. Laub, Ablation Test-Case Series 2 (2010)

  30. M. Ewing, T. Laker, D. Walker, J. Thermophys. Heat Transf. 27, 615 (2013)

    Article  Google Scholar 

  31. J. Lachaud, I. Cozmuta, N. Mansour, G. Vignoles, Y. Aspa, I. Boyd, R. Moser, M. Marchetti, J. Spacecr. Rockets 47, 910 (2010)

    Article  ADS  Google Scholar 

  32. J. Lachaud and N. Mansour, 44th AIAA Thermophys. Conf. (2013)

  33. S. Mckinley and M. Levine, Coll. Redw. 45, (1999)

  34. X.-D. Yuan, W.-L. Cheng, Energy Convers. Manag. 84, 550 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the National Natural Science Foundation of China for the financial support (Grant Nos. 51876198, 52006211).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong-Le Nian or Wen-Long Cheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, XY., Liu, N., Zhao, R. et al. Inverse Identification of Temperature-Dependent Thermal Conductivity for Charring Ablators. Int J Thermophys 42, 26 (2021). https://doi.org/10.1007/s10765-020-02781-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-020-02781-x

Keywords

Navigation