Skip to main content
Log in

Nonlinear ion acoustic rogue waves in a superthermal electron–positron–ion plasma

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

In this paper, the nonlinear ion acoustic rogue waves (IARWs) are investigated in an unmagnetized, collisionless plasma which consist of positive ions, superthermal electrons and positrons, respectively. A nonlinear Schrödinger equation (NLSE) of IAW packets has been obtained by using the reductive perturbation technique. Furthermore, the effects of superthermal electrons and positrons on the nonlinear dispersion relation, the group velocity and the modulational instability of nonlinear ion acoustic wave (IAW) packets have been studied in detail. At the same time, the characteristics of first- and second-order IARW also have been discussed. It seems that there is some significant influence of superthermal electrons and positrons on the nonlinear ion acoustic waves. Meanwhile, it is also found that the first- and second-order IARW consisting of Peregrine breathers can be excited by using the modulational instability in this system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. E C Whipple, T G Northrop and D A Mendis J. Geophys. Res. 90 7405 (1985)

    Article  ADS  Google Scholar 

  2. M Horanyi and D A Mendis Astrophys J 294 357 (1985)

    Article  ADS  Google Scholar 

  3. C K Goertz Rev. Geophys. 27 271(1989)

    Article  ADS  Google Scholar 

  4. D A Mendis and M Rosenberg Plasma Sci. 20 929 (1992)

    Article  Google Scholar 

  5. T G Northrop Phys. Scripta 45 475 (1992)

    Article  ADS  Google Scholar 

  6. F Verheest Space Sci. Rev. 77 267 (1996)

    Article  ADS  Google Scholar 

  7. S G Tagare Phys. Plasmas 4 3167 (1997)

    Article  ADS  Google Scholar 

  8. S A Khrapak and H M Thomas Phys. Rev. E 91 033110 (2015)

    Article  ADS  Google Scholar 

  9. V N Naumkin, D I Zhukhovitskii, V I Molotkov, A M Lipaev, V E Fortov, H M Thomas, P Huber and G E Morfill Phys. Rev. E 94 033204 (2016)

    Article  ADS  Google Scholar 

  10. F Verheest, V V Yaroshenko, G Jacobs and P Meuris Phys. Scr. 64 494 (2001)

    Article  ADS  Google Scholar 

  11. F Verheest, V V Yaroshenko, M A Hellberg Phys. Plasmas 9 2479 (2002)

    Article  ADS  Google Scholar 

  12. W S Duan and J Parkes Phys. Rev. E 68 067402 (2003)

    Article  ADS  Google Scholar 

  13. W S Duan, X R Hong, Y R Shi and K P Lv Chin. Phys. Lett. 19 1231 (2002)

    Article  ADS  Google Scholar 

  14. W S Duan, J Parkes and M M Lin Phys. Plasmas 12 022106 (2005)

    Article  ADS  Google Scholar 

  15. M M Lin and W S Duan Phys. Plasmas 11 5710 (2004)

    Article  ADS  Google Scholar 

  16. N N Rao, P K Shukla and M Y Yu Planet. Space Sci. 38 543 (1990)

    Article  ADS  Google Scholar 

  17. P K Shukla and V P Silin Phys. Scripta 45 508 (1992)

    Article  ADS  Google Scholar 

  18. A Barkan, R L Merlino and N D’Angelo Phys. Plasmas 2 3563 (1995)

    Article  ADS  Google Scholar 

  19. C Thompson, A Barkan, N D’Angelo and R L Merlino Phys. Plasmas 4 2331 (1997)

    Article  ADS  Google Scholar 

  20. Y Nakamura and A Sarma Phys. Plasmas 8 3921 (2001)

    Article  ADS  Google Scholar 

  21. C R Choi, C M Ryu, N C Lee and D Y Lee Phys. Plasmas 12 022304 (2005)

    Article  ADS  Google Scholar 

  22. C R Choi, C M Ryu, N C Lee, D Y Lee and Y Kim Phys. Plasmas 12 072301 (2005)

    Article  ADS  Google Scholar 

  23. C Kharif, E Pelinovsky and A Slunyaev Springer, Berlin, Herdelberg (2009).

  24. Y V Bludov, V V Konotop and N Akhmediev Phys. Rev. A 80 033610 (2009)

    Article  ADS  Google Scholar 

  25. P Muller, C Garrett and A Osborne Oceanogr 18 66 (2005)

    Article  Google Scholar 

  26. S M Ahmed, M S Metwally, S A El-Hafeez and W M Moslem Appl. Math. Inf. Sci. 10 317 (2016)

    Article  Google Scholar 

  27. W M Moslem, R Sabry, S K El-Labany and P K Shukla Phys. Rev. E 84 066402 (2011)

    Article  ADS  Google Scholar 

  28. A Chabchoub, N P Hoffmann and N Akhmediev Phys. Rev. Lett. 106 204502 (2011)

    Article  ADS  Google Scholar 

  29. A Chabchoub, N Akhmediev and N P Hoffmann Phys. Rev. E 86 016311 (2012)

    Article  ADS  Google Scholar 

  30. H Bailung, S K Sharma and Y Nakamura Phys. Rev. Lett. 107 255005 (2011)

    Article  ADS  Google Scholar 

  31. W M Moslem, P K Shukla and B Eliasson Europhys. Lett. 96 25002 (2011)

    Article  ADS  Google Scholar 

  32. W M Moslem Phys. Plasmas 18 032301 (2011)

    Article  ADS  Google Scholar 

  33. A Ankiewicz, D J Kedziora and N Akhmediev Phys. Lett. A 375 2782 (2011)

    Article  ADS  Google Scholar 

  34. A Chabchoub, N Hoffmann, M Onorato and N Akhmediev Phys. Rev. X 2 011015 (2012)

    Google Scholar 

  35. S Guo, H Wang and L Mei Phys. Plasmas 19 063701 (2012)

    Article  ADS  Google Scholar 

  36. H Asgari, S V Muniandy and C S Wong Phys. Plasmas 20 013704 (2013)

    Article  ADS  Google Scholar 

  37. H Bailung, S K Sharma and Y Nakamura Phys. Plasmas 17 062103 (2010)

    Article  ADS  Google Scholar 

  38. M K Deka and N C Adhikary, A P Misra, H Bailung and Y Nakamura Phys. Plasmas 19 103704 (2012)

  39. A P Misra and N C Adhikary Phys. Plasmas 18 122112 (2011)

    Article  ADS  Google Scholar 

  40. K Dittmann, C Kullig and J Meichsner Plasma Phys. Control. Fusion 54 124038 (2012)

  41. Y R Ma, C L Wang, J R Zhang, J A Sun, W S Duan and L Yang Phys. Plasmas 19 113702 (2012)

  42. N Akhmediev, J M Soto-Crespo and A Ankiewicz Phys. Lett. A 373 2137 (2009)

  43. S Ghosh, S Sarkar, M Khan and M R Gupta Phys. Rev. E 84 066401 (2011)

  44. S Guo, L Mei and W Shi Phys. Lett. A 377 2118 (2013)

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos.11205124, 11565022, 11365020) and the Natural Science Foundation of Northwest Normal University (Grant Nos. NWNU-LKQN-14-9).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M M Lin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, M.M., Yu, T.X., Wen, H.S. et al. Nonlinear ion acoustic rogue waves in a superthermal electron–positron–ion plasma . Indian J Phys 96, 233–241 (2022). https://doi.org/10.1007/s12648-020-01947-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-020-01947-5

Keywords

Navigation