Skip to main content
Log in

Effects of lake sediment contamination by PAHs on nutrients and phytoplankton in Vaca Muerta, Neuquén, Argentina

  • Thematic Issue
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Aquatic sediments act as a source for nutrients as well as contaminants, among which there are polycyclic aromatic hydrocarbons (PAHs) such as phenanthrene (Ph), anthracene (An), pyrene (Py) and benz(a)anthracene (Ba). Phytoplankton can be an indicator of contaminants presence, thus, we decided to study it in Los Barreales reservoir (Neuquén Province, Argentina). Reservoir water and sediments were characterized, and additional samples were collected to perform assays. Bioassays were carried out by incubating sediments contaminated with increasing concentrations of PAHs and filtered lake water, with the addition of native phytoplankton: with the addition of Scenedesmus quadricauda (Turpin) Brébisson (reservoir native alga); and without sediments. The results showed that: (A) nutrient concentrations in water decreased for Ph, Py and Ba at concentrations from 500 ppm, (B) S. quadricauda abundance and chlorophyll a decreased with Ph treatments at 250 ppm (on incubation days 2 and 7), Py from 1000 ppm (on incubation day 2) and Ba from 50 ppm (on incubation days 2 and 7), and (C) that the effect of the PAHs used on algal growth was direct. Sediments contamination with Ph, Py or Ba modified nutrient concentrations in the water column and affected S. quadricauda growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adams WJ, Kimerle RA, Mosher RG (1985) Aquatic safety assessment of chemicals sorbed to sediments. In: Aquatic toxicology and hazard assessment: seventh symposium, ASTM international, pp 429–453. https://doi.org/10.1520/STP36282S

  • Aksmann A, Tukaj Z (2004) The effect of anthracene and phenanthrene on the growth, photosynthesis, and SOD activity of the green alga Scenedesmus armatus depends on the PAR irradiance and CO 2 level. Arch Environ Contam Toxicol 47(2):177–184. https://doi.org/10.1007/s00244-004-2297-9

    Article  Google Scholar 

  • Alvaro CES, Arocena LA, Martínez MÁ, Nudelman NES (2017) Biodegradación aerobia de fracciones de hidrocarburos provenientes de la actividad petrolera en un suelo de la región Patagonia Norte, Argentina. Revista internacional de contaminación ambiental 33(2):247–257. https://doi.org/10.20937/rica.2017.33.02.06

    Article  Google Scholar 

  • Andersen RA (ed) (2005) Algal culturing techniques. Elsevier, Massachusetts

    Google Scholar 

  • APHA (1995) Standard methods for the examination of water and wastewater. American Public Health Association, Washington, DC

  • Arias AH, Vazquez-Botello A, Tombesi N, Ponce-Vélez G, Freije H, Marcovecchio J (2010) Presence, distribution, and origins of polycyclic aromatic hydrocarbons (PAHs) in sediments from Bahía Blanca estuary, Argentina. Environ Monit Assess 160(1–4):301. https://doi.org/10.1007/s10661-008-0696-5

    Article  Google Scholar 

  • Banjoo DR, Nelson PK (2005) Improved ultrasonic extraction procedure for the determination of polycyclic aromatic hydrocarbons in sediments. J Chromatogr A. https://doi.org/10.1016/j.chroma.2005.01.033

    Article  Google Scholar 

  • Bastian MV, Toetz DW (1982) Effect of eight polynuclear hydrocarbons on growth of Anabaena flosaquae. Bull Environ Contam Toxicol 29(5):531–538. https://doi.org/10.1007/BF01669616

    Article  Google Scholar 

  • Boström B, Andersen JM, Fleischer S, Jansson M (1988) Exchange of phosphorus across the sediment-water interface. Phosphorus in freshwater ecosystems. Springer, Dordrecht, pp 229–244. https://doi.org/10.1007/978-94-009-3109-1_14

    Chapter  Google Scholar 

  • Boström CE, Gerde P, Hanberg A, Jernström B, Johansson C, Kyrklund T, Westerholm R (2002) Cancer risk assessment, indicators, and guidelines for polycyclic aromatic hydrocarbons in the ambient air. Environ Health Perspect 110(suppl 3):451–488. https://doi.org/10.1289/ehp.110-1241197

    Article  Google Scholar 

  • Cabanillas L, Carstens G, Lovecchio JP, Marshall P, Rebori L, Soldo JC, Vergani G (2013) Hidrocarburos convencionales y no convencionales. Asociación Argentina de Geólogos y Geofísicos del Petróleo 23(134):41–48

    Google Scholar 

  • Carter M (1993) Soil sampling and methods of analysis. Canadian Society of Soil Science. Lewis Pub., Florida

  • Casas G, Gil MN, Commendatore MG, Torres AI, Marinho C, Sturla J (2010) Evaluación de la composición químico-nutricional y del nivel de metales pesados e hidrocarburos en Undaria pinnatifida de los golfos san josé y nuevo, chubut. Dirección General de Promoción Científica y Técnica de la Provincia de Chubut, Puerto Madryn, Argentina

  • Chen H, Zhang Z, Tian F, Zhang L, Li Y, Cai W, Jia X (2018) The effect of pH on the acute toxicity of phenanthrene in a marine microalgae Chlorella salina. Sci Rep 8(1):1–8. https://doi.org/10.1038/s41598-018-35686-9

    Article  Google Scholar 

  • Commendatore MG, Nievas ML, Amin O, Esteves JL (2012) Sources and distribution of aliphatic and polyaromatic hydrocarbons in coastal sediments from the Ushuaia Bay (Tierra del Fuego, Patagonia, Argentina). Mar Environ Res 74:20–31. https://doi.org/10.1016/j.marenvres.2011.11.010

    Article  Google Scholar 

  • Commendatore MG, Franco MA, Gomes Costa P, Castro IB, Fillmann G, Bigatti G, Nievas ML (2015) Butyltins, polyaromatic hydrocarbons, organochlorine pesticides, and polychlorinated biphenyls in sediments and bivalve mollusks in a mid latitude environment from the Patagonian coastal zone. Environ Toxicol Chem 34(12):2750–2763. https://doi.org/10.1002/etc.3134

    Article  Google Scholar 

  • Del Vento S, Dachs J (2002) Prediction of uptake dynamics of persistent organic pollutants by bacteria and phytoplankton. Environ Toxicol Chem Int J 21(10):2099–2107. https://doi.org/10.1002/etc.5620211013

    Article  Google Scholar 

  • Di Rienzo JA, Casanoves F, Balzarini MG, González L, Tablada M, Robledo CW (2011) InfoStat Group, FCA, Universidad Nacional de Córdoba, Argentina. http://www.infostat.com.ar

  • Diaz M, Pedrozo F, Reynolds C, Temporetti P (2007) Chemical composition and the nitrogen-regulated trophic state of Patagonian lakes. Limnol Ecol Manag Inland Waters 37(1):17–27. https://doi.org/10.1016/j.limno.2006.08.006

    Article  Google Scholar 

  • Diaz M, Mora V, Pedrozo F, Nichela D, Baffico G (2015) Evaluation of native acidophilic algae species as potential indicators of polycyclic aromatic hydrocarbon (PAH) soil contamination. J Appl Phycol 27(1):321–325. https://doi.org/10.1007/s10811-014-0334-2

    Article  Google Scholar 

  • Duarte L (2013) Proyecto de Desarrollo Institucional para la Inversión UTF/ARG/017/ARG. Organización de las Naciones Unidas para la Alimentacion y la Agricultura, Argentina

  • Echeveste P, Agustí S, Dachs J (2010) Cell size dependent toxicity thresholds of polycyclic aromatic hydrocarbons to natural and cultured phytoplankton populations. Environ Pollut 158(1):299–307. https://doi.org/10.1016/j.envpol.2009.07.006

    Article  Google Scholar 

  • Engraff M, Solere C, Smith K, Mayer P, Dahllöf I (2011) Aquatic toxicity of PAHs al PAH mixtures at saturation to benthic amphipods. Aquat Toxicol 102:142–149. https://doi.org/10.1016/j.aquatox.2011.01.009

    Article  Google Scholar 

  • Ferrante SB, Giuliani A (2014) Hidrocarburos no convencionales en Vaca Muerta, Neuquén: ¿Recursos estratégicos para el autoabastecimiento energético en la Argentina del siglo XXI? (dossier). Revista Estado y Políticas Públicas 2(3):33–61. http://hdl.handle.net/10469/8746

  • Fetzer JC (2000) Large (C= 24) polycyclic aromatic hydrocarbons: chemistry and analysis, vol 218. John Wiley & Sons, New York

    Google Scholar 

  • Forsberg C (1989) Importance of sediments in understanding nutrient cyclings in lakes. Hydrobiologia 176(177):263–277. https://doi.org/10.1007/BF00026561

    Article  Google Scholar 

  • Forsythe W (1985) Física de suelos: manual de laboratorio, 1st edn. IICA, San José de Costa Rica

    Google Scholar 

  • Froehner S, Machado KS, Dombroski LF, Nunes AC, Kishi RT, Bleninger T, Sanez J (2012) Natural biofilms in freshwater ecosystem: indicators of the presence of polycyclic aromatic hydrocarbons. Water Air Soil Pollut 223(7):3965–3973. https://doi.org/10.1007/s11270-012-1164-y

    Article  Google Scholar 

  • Gala WR, Giesy JP (1994) Flow cytometric determination of the photoinduced toxicity of anthracene to the green alga Selenastrum capricornutum. Environ Toxicol Chem Int J 13(5):831–840. https://doi.org/10.1002/etc.5620130519

    Article  Google Scholar 

  • Gaspare L, Machiwa JF, Mdachi SJM, Streck G, Brack W (2009) Polycyclic aromatic hydrocarbon (PAH) contamination of surface sediments and oysters from the inter-tidal areas of Dar es Salaam. Tanzan Environ Pollut 157(1):24–34. https://doi.org/10.1016/j.envpol.2008.08.002

    Article  Google Scholar 

  • Golterman HL (2004) The chemistry of phosphate and nitrogen compounds in sediments. Kluwer Academic Publichers, London

    Google Scholar 

  • Håkanson L (2004) Internal loading: a new solution to an old problem in aquatic sciences. Lakes Reserv Res Manag 9(1):3–23. https://doi.org/10.1111/j.1440-1770.2004.00230.x

    Article  Google Scholar 

  • Hakanson L, Jansson M (1983) Principles of lake sedimentology. Springer-Verlag, Heidelberg

    Book  Google Scholar 

  • Hall C, Tharakan P, Hallock J, Cleveland C, Jefferson M (2003) Hydrocarbons and the evolution of human culture. Nature 426(6964):318–322. https://doi.org/10.1038/nature02130

    Article  Google Scholar 

  • Hannam ML, Bamber SD, Galloway TS, Moody AJ, Jones MB (2010) Effects of the model PAH phenanthrene on immune function and oxidative stress in the haemolymph of the temperate scallop Pecten maximus. Chemosphere 78(7):779–784. https://doi.org/10.1016/j.chemosphere.2009.12.049

    Article  Google Scholar 

  • Hill GJC, Machlis L (1970) Defined media for growth and gamete production by the green alga Oedogonium cardiacum. Plant physiol 46:224–226. https://doi.org/10.1104/pp.46.2.224

    Article  Google Scholar 

  • Hoshaw RW, Rosowski JR, Stein JR (1973) Handbook of phycological methods: culture methods and growth measurements. Cambridge University Press, Cambridge

    Google Scholar 

  • IARC (1983) Monographs on the evaluation of carcinogenic risks to humans volume 32. Polynuclear aromatic compounds, part 1, chemical, environmental and experimental data. World Health Organization, International Agency for Resarch on Cancer. France

  • Jones JG, Simon BM, Horsley RW (1982) Microbiological sources of ammonia in freshwater lake sediments. Microbiology 128(12):2823–2831. https://doi.org/10.1099/00221287-128-12-2823

    Article  Google Scholar 

  • Karickhoff SW, Brown DS, Scott TA (1979) Sorption of hydrophobic pollutants on natural sediments. Water Res 13(3):241–248. https://doi.org/10.1016/0043-1354(79)90201-X

    Article  Google Scholar 

  • Kulik N, Goi A, Trapido M, Tuhkane T (2006) Degradation of polycyclic aromatic hydrocarbons by combined chemical pre-oxidation and bioremediation in creosote contaminated soil. J Environ Manag 78:382–391. https://doi.org/10.1016/j.jenvman.2005.05.005

    Article  Google Scholar 

  • Leanza HA, Hugo C, Repol D, González R, Danieli JC, Lizuain A (2001) Hoja Geológica 3969-I, Zapala. Provincia del Neuquén. Servicio Geológico Minero Argentino. Instituto de Geología y Recursos Minerales. Boletín 275:134. Buenos Aires. http://repositorio.segemar.gob.ar/handle/308849217/198

  • López Ordieres MC (2018) Determinación de la calidad química del agua de la baja cuenca del río Neuquén asociadas a las actividades hidrocarburífera y agrícola. Dissertation, Universidad Nacional del Comahue

  • Luque-Garcı́a J, Luque de Castro M (2003) Ultrasound: a powerful tool for leaching. TrAC Trends Anal Chem 22:41–47. https://doi.org/10.1016/S0165-9936(03)00102-X

    Article  Google Scholar 

  • Maassen S, Uhlmann D, Roske I (2005) Sediment and pore water composition as a basis for the trophic evaluation of standing waters. Hydrobiologia 543:55–70. https://doi.org/10.1007/s10750-004-5946-0

    Article  Google Scholar 

  • Mackay D, Callcott D (1998) Partitioning and physical chemical properties of PAHs. PAHs and related compounds. Springer, Berlin, pp 325–345. https://doi.org/10.1007/978-3-540-49697-7_8

    Chapter  Google Scholar 

  • Madariaga MC (2018) Diagnóstico para el desarrollo de Cordillera y Precordillera de las provincias de Río Negro y Neuquén. Comunicación técnica Nº 241. Ediciones INTA, Bariloche

  • McConkey BJ, Duxbury CL, Dixon DG, Greenberg BM (1997) Toxicity of a PAH photooxidation product to the bacteria Photobacterium phosphoreum and the duckweed Lemna gibba: Effects of phenanthrene and its primary photoproduct, phenanthrenequinone. Environ Toxicol Chem Int J 16(5):892–899. https://doi.org/10.1002/etc.5620160508

    Article  Google Scholar 

  • Millemann RE, Birge WJ, Black JA, Cushman RM, Daniels KL, Franco PJ, Stewart AJ (1984) Comparative acute toxicity to aquatic organisms of components of coal-derived synthetic fuels. Trans Am Fish Soc 113(1):74–85. https://doi.org/10.1577/1548-8659(1984)113%3C74:CATTAO%3E2.0.CO;2

    Article  Google Scholar 

  • Montgomery D (2004) Diseño y análisis de experimentos. Universidad Estatal de Arizona. 2nd Edn. Limusa Wiley, México

  • Monza LB, Loewy RM, Savini MC, Pechen de d’Angelo AM (2013) Sources and distribution of aliphatic and polyaromatic hydrocarbons in sediments from the Neuquén River, Argentine Patagonia. J Environ Sci Health Part A 48(4):370–379. https://doi.org/10.1080/10934529.2013.728097

    Article  Google Scholar 

  • Morelli IS, Del Panno MT, De Antoni GL, Painceira MT (2005) Laboratory study on the bioremediation of petrochemical sludge-contaminated soil. Int Biodeterior Biodegrad 55(4):271–278. https://doi.org/10.1016/j.ibiod.2005.03.001

    Article  Google Scholar 

  • Munawar M, Munawar IF (1987) Phytoplankton bioassays for evaluating toxicity of in situ sediment contaminants. Ecological effects of in situ sediment contaminants developments in hydrobiology, vol 39. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-4053-6_10

    Chapter  Google Scholar 

  • Murphy J, Riley JP (1962) A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta 27:31–36. https://doi.org/10.1016/S0003-2670(00)88444-5

    Article  Google Scholar 

  • Nagpal NK (1993) Ambient water quality criteria for polycyclic aromatic hydrocarbons (PAHs). Ministry of Environment, Lands and Parks Province of British Columbia, Victoria

  • Net S, El-Osmani R, Prygiel E, Rabodonirina S, Dumoulin D, Ouddane B (2015) Overview of persistent organic pollution (PAHs, Me-PAHs and PCBs) in freshwater sediments from Northern France. J Geochem Explor 148:181–188. https://doi.org/10.1016/j.gexplo.2014.09.008

    Article  Google Scholar 

  • Okay OS, Tüfekçi V, Donkin P (2002) Acute and chronic toxicity of pyrene to the unicellular marine alga Phaeodactylum tricornutum. Bull Environ Contam Toxicol 68(4):600–605. https://doi.org/10.1007/s001280296

    Article  Google Scholar 

  • Oliva AL (2016) Acumulación de hidrocarburos aromáticos policíclicos (PAHs) en sedimentos y mejillines (Brachidontes rodriguezii) del estuario de Bahía Blanca. Dissertation, Universidad Nacional del Sur

  • Ospina-Alvarez N, Pena EJ (2004) Alternativas de monitoreo de calidad de aguas: algas como bioindicadores. Ata Nova 2(4):513–517

    Google Scholar 

  • Patrolecco L, Ademollo N, Capri S, Pagnotta R, Polesello S (2010) Occurrence of priority hazardous PAHs in water, suspended particulate matter, sediment and common eels (Anguilla anguilla) in the urban stretch of the River Tiber (Italy). Chemosphere 81(11):1386–1392. https://doi.org/10.1016/j.chemosphere.2010.09.027

    Article  Google Scholar 

  • Peluffo M (2016) Remediación de suelos contaminados con hidrocarburos policíclicos aromáticos mediante oxidación química. Dissertation, Universidad Nacional de La Plata

  • Pettersson K (1998) Mechanisms for internal loading of phosphorus in lakes. Hydrobiologia 373:21–25. https://doi.org/10.1023/A:1017011420035

    Article  Google Scholar 

  • Ptacnik R, Lepistö L, Willén E, Brettum P, Andersen T, Rekolainen S, Carvalho L (2008) Quantitative responses of lake phytoplankton to eutrophication in Northern Europe. Aquat Ecol 42(2):227–236. https://doi.org/10.1007/s10452-008-9181-z

    Article  Google Scholar 

  • Rabodonirina S, Net S, Ouddane B, Merhaby D, Dumoulin D, Popescu T, Ravelonandro P (2015) Distribution of persistent organic pollutants (PAHs, Me-PAHs, PCBs) in dissolved, particulate and sedimentary phases in freshwater systems. Environ Pollut 206:38–48. https://doi.org/10.1016/j.envpol.2015.06.023

    Article  Google Scholar 

  • Ramadass K, Megharaj M, Venkateswarlu K, Naidu R (2016) Sensitivity and antioxidant response of Chlorella sp. MM3 to used engine oil and its water accommodated fraction. Bull Environ Contam Toxicol 97(1):71–77. https://doi.org/10.1007/s00128-016-1817-4

    Article  Google Scholar 

  • Ren L, Rabalais NN, Turner RE, Morrison W, Mendenhall W (2009) Nutrient limitation on phytoplankton growth in the upper Barataria Basin, Louisiana: microcosm bioassays. Estuar Coasts 32(5):958–974. https://doi.org/10.1007/s12237-009-9174-8

    Article  Google Scholar 

  • Richardson TL, Pinckney JL, Paerl HW (2001) Responses of estuarine phytoplankton communities to nitrogen form and mixing using microcosm bioassays. Estuaries 24(6):828–839. https://doi.org/10.2307/1353174

    Article  Google Scholar 

  • Rysgaard S, Risgaard-Petersen N, Sloth NP (1996) Nitrification, denitrification, and nitrate ammonification in sediments of two coastal lagoons in Southern France. Coastal lagoon eutrophication and anaerobic processes (CLEAN). Springer, Dordrecht, pp 133–141. https://doi.org/10.1007/978-94-009-1744-6_11

    Chapter  Google Scholar 

  • Schindler D, Hecky RE, Findlay DL, Stainton MP, Parker BR, Paterson MJ, Beaty KG, Lyng M, Kasian EM (2008) Eutrophication of lakes cannot be controlled by reducing nitrogen input: results of a 37-year whole ecosystem experiment. Proc Natl Acad Sci USA 105:11254–11258. https://doi.org/10.1073/pnas.0805108105

    Article  Google Scholar 

  • Seiler T-B, Best N, Fernqvist MM, Hercht H, Smith K, Braunbeck T, Mayer P, Hollert H (2014) PAH toxicity at aqueous solubility in the fish embryo test with Danio rerio using passive dosing. Chemosphere 112:77–84. https://doi.org/10.1016/j.chemosphere.2014.02.064

    Article  Google Scholar 

  • Sibley PK, Harris ML, Bestari KT, Steele TA, Robinson RD, Gensemer RW, Solomon KR (2004) Response of zooplankton and phytoplankton communities to creosote-impregnated Douglas fir pilings in freshwater microcosms. Arch Environ Contam Toxicol 47(1):56–66. https://doi.org/10.1007/s00244-004-3129-7

    Article  Google Scholar 

  • Smedes F, Van Vliet LA, Booij K (2013) Multi-ratio equilibrium passive sampling method to estimate accessible and pore water concentrations of polycyclic aromatic hydrocarbons and polychlorinated biphenyls in sediment. Environ Sci Technol 47(1):510–517. https://doi.org/10.1021/es3040945

    Article  Google Scholar 

  • Sun FL, Wang YS, Sun CC, Peng YL, Deng C (2012) Effects of three different PAHs on nitrogen-fixing bacterial diversity in mangrove sediment. Ecotoxicology 21(6):1651–1660. https://doi.org/10.1007/s10646-012-0946-8

    Article  Google Scholar 

  • Swartz RC (1999) Consensus sediment quality guidelines for polycyclic aromatic hydrocarbon mixtures. Environ Toxicol Chem Int J 18(4):780–787. https://doi.org/10.1002/etc.5620180426

    Article  Google Scholar 

  • Swartz RC, Kemp PF, Schults DW, Ditsworth GR, Ozretich RJ (1989) Acute toxicity of sediment from Eagle Harbor, Washington, to the infaunal amphipod Rhepoxynius abronius. Environ Toxicol Chem Int J 8(3):215–222. https://doi.org/10.1002/etc.5620080304

    Article  Google Scholar 

  • Ujowundu CO, Kalu FN, Nwaoguikpe RN, Kalu OI, Ihejirika CE, Nwosunjoku EC, Okechukwu RI (2011) Biochemical and physical characterization of diesel petroleum contaminated soil in southeastern Nigeria. Res J Chem Sci 1(8):57–62

    Google Scholar 

  • Upham BL, Weis LM, Trosko JE (1998) Modulated gap junctional intercellular communication as a biomarker of PAH epigenetic toxicity: structure-function relationship. Environ Health Perspect 106:975–981. https://doi.org/10.1289/ehp.98106s4975

    Article  Google Scholar 

  • USEPA (2002) Short term methods for estimating the chronic toxicity of effluents and receiving waters to freshwater organism, 4th edn. EPA-821-R-02-013, Washington, DC

  • Wetzel RG (2001) Limnology: lake and river ecosystems. Gulf professional publishing, Houston

    Google Scholar 

  • Wetzel RG, Likens GE (1991) Limnological Analyses. Springer-Verlag, New York

    Book  Google Scholar 

  • WHO (1998) Selected heterocyclic polycyclic aromatic hydrocarbons. Environmental Health Criteria 202, World Health Organization, Geneva, Switzerland. http://hdl.handle.net/20.500.11822/29533

  • Wilcke W (2000) Polycyclic aromatic hydrocarbons (PAHs) in soil––a review. J Plant Nutr Soil Sci 163(3):229–248. https://doi.org/10.1002/1522-2624(200006)163:3%3C229::AID-JPLN229%3E3.0.CO;2-6

    Article  Google Scholar 

  • Yunker MB, Macdonald RW, Vingarzan R, Mitchell RH, Goyette D, Sylvestre S (2002) PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition. Org Geochem 33(4):489–515. https://doi.org/10.1016/S0146-6380(02)00002-5

    Article  Google Scholar 

  • Zachleder V, Tukaj Z (1993) Effect of fuel oil and dispersant on cell cycle and macromolecular synthesis in the chlorococcal alga Scenedesmus armatus. Mar Biol 117(2):347–353. https://doi.org/10.1007/BF00345680

    Article  Google Scholar 

  • Zanettini JCM, Santamaría GR, Leanza H (2001) Hoja Geológica 3772-II, Las Ovejas. Provincia del Neuquén. Servicio Geológico Minero Argentino. Instituto de Geología y Recursos Minerales. Boletín 263:67. Buenos Aires. https://repositorio.segemar.gov.ar/handle/308849217/151

  • Zhang X, Xia X, Dong J, Bao Y, Li H (2014) Enhancement of toxic effects of phenanthrene to Daphnia magna due to the presence of suspended sediment. Chemosphere 104:162–169

    Article  Google Scholar 

Download references

Acknowledgements

We wish to thank P. Alvear and R. Sauval for their sampling assistance. We especially want to thank M. Nichela and M. J. Bernas for providing us with accommodation and easy access to the reservoir.

Funding

Funding for this study was provided by Centro Regional Universtario Bariloche (Universidad Nacional del Comahue) (Funds from Ord 160) and Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina (Funds from PICT 2018 4387 ANPCYT).

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by LR, PT, VM, GB and GB. The first draft of the manuscript was written by LR and all the authors commented on previous versions of the manuscript. All the authors read and approved the final manuscript.

Corresponding author

Correspondence to Leandro Rotondo.

Ethics declarations

Conflict of interest

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is a part of the Topical Collection in Environmental Earth Sciences on “Advances in Environmental Geochemistry” guest edited by Dr. Eleanor Carol, Dr. Lucia Santucci and Dr. Lia Botto.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 77 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rotondo, L., Temporetti, P., Mora, V. et al. Effects of lake sediment contamination by PAHs on nutrients and phytoplankton in Vaca Muerta, Neuquén, Argentina. Environ Earth Sci 80, 66 (2021). https://doi.org/10.1007/s12665-020-09323-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-020-09323-6

Keywords

Navigation