Skip to main content
Log in

Outstanding contribution of Professor József Szejtli to cyclodextrin applications in foods, cosmetics, drugs, chromatography and biotechnology: a review

  • Review
  • Published:
Environmental Chemistry Letters Aims and scope Submit manuscript

Abstract

Cyclodextrins, natural oligosaccharides obtained from starch by enzymatic degradation, have been discovered 130 years ago by the pioneering work of the French pharmacist and chemist Antoine Villiers. These molecules still fascinate researchers and industrials because they are remarkable macrocyclic molecules with major impacts in chemistry, biology and health science. When we look at cyclodextrin chemistry today and reflect on how it has developed over the last five decades, no other scientist has been more determining, focused and inspiring than Professor József Szejtli. Indeed, among the list of prestigious researchers who have contributed to the development of cyclodextrins, Professor Szejtli played a fundamental role as an eminent scientist and a visionary. Since the mid-1950s, he has devoted his life to cyclodextrins, publishing more than 500 publications, including 106 patent applications. Professor Szejtli is internationally recognized for his outstanding contribution to the cyclodextrin science and considered to be the “Godfather of Cyclodextrins.” This paper is a tribute to his scientific oeuvre. After a brief overview of his personal life, some important works published by Professor Szejtli in more than fifty years of career were highlighted. For example, he was the first to synthesize the 14C labeled glucose-based β-cyclodextrin and published his oral metabolism. He was also the first to describe the acid hydrolysis of β-cyclodextrin and discovered that β-cyclodextrin formed inclusion complexes with hydrochloric acid. Professor Szejtli is the founder of International Cyclodextrin Symposia, the first of which was held in 1981 in Budapest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

source: CycloLab archives

Fig. 3

source: CycloLab archives

Fig. 4

source: CycloLab

Fig. 5

adapted from Szejtli (1971, 1975, 1982a)

Fig. 6

source: CycloLab archives

Fig. 7

adapted from Szejtli (1988a)

Fig. 8

adapted from Szejtli (1978)

Fig. 9

adapted from Szejtli (2004a)

Fig. 10

adapted from Szejtli (1977b)

Fig. 11

adapted from Szejtli (1978)

Fig. 12
Fig. 13

adapted from Szejtli (1983b)

Fig. 14

source: CycloLab archives

Fig. 15

adapted from Szejtli (1990)

Similar content being viewed by others

References

  • Armstrong DW, Jin HL (1989) Liquid-chromatographic separation of anomeric forms of saccharides with cyclodextrin bonded phases. Chirality 1:27–37. https://doi.org/10.1002/chir.530010108

    Article  CAS  Google Scholar 

  • Arora D, Saneja A, Jaglan S (2019) Cyclodextrin-based delivery systems for dietary pharmaceuticals. Environ Chem Lett 17:1263–1270. https://doi.org/10.1007/s10311-019-00878-w

    Article  CAS  Google Scholar 

  • Bakó P, Fenichel L, Tóke L, Szente L, Szejtli J (1994) Methylation of cyclodextrins by phase-transfer catalysis. J Incl Phenom Mol Recognit Chem 18:307–314. https://doi.org/10.1007/BF00708737

    Article  Google Scholar 

  • Bender ML, Komiyama M (1978) Cyclodextrin chemistry. Springer, Berlin

    Book  Google Scholar 

  • Buchanan CM, Tindall D, Wood MD, Szejtli J, Szente L (2001) Triacetylcyclodextrin complexes as polymer additives for cellulose ester thermoplastics. Abstr Pap Am Chem Soc 221:U181–U182

    Google Scholar 

  • Buchanan CM, Alderson SR, Cleven CD, Dixon DW, Iványi R, Lambert JL, Lowman DW, Offerman RJ, Szejtli J, Szente L (2002) Synthesis and characterization of water-soluble hydroxybutenyl cyclomaltooligosaccharides (cyclodextrins). Carbohydr Res 337:493–507. https://doi.org/10.1016/S0008-6215(01)00328-7

    Article  CAS  Google Scholar 

  • Buchanan CM, Buchanan NL, Jicsinszky L, Posey-Dowty J, Szejtli J, Szente L (2004) Solubilization of poorly water-soluble drugs by hydroxybutenyl cyclodextrins. Abstr Pap Am Chem Soc 228:U241–U242

    Google Scholar 

  • Bujtas K, Cserhati T, Szejtli J (1987) Reduction of phytotoxicity of nonionic tensides by cyclodextrins. J Incl Phenom 5:421–425. https://doi.org/10.1007/BF00664097

    Article  CAS  Google Scholar 

  • Caesar GV (1968) The Schardinger dextrins. In: Radley JA (ed) starch and its derivatives. Chapman and Hall Ltd., London, pp 290–305

    Google Scholar 

  • Chiesi P, Ventura P, Pasini M, Szejtli J, Vikmon M, Redenti E (1994) World Patent WO9416733

  • Clarke RJ, Coates JH, Lincoln SF (1988) Inclusion complexes of cyclomalto-oligosaccharides (cyclodextrins). Adv Carbohydr Chem Biochem 46:205–249

    Article  CAS  Google Scholar 

  • Connors KA (1997) The stability of cyclodextrin complexes in solution. Chem Rev 97:1325–1357

    Article  CAS  Google Scholar 

  • Cramer F (1954) Einschlussverbindungen. Springer, Berlin

    Book  Google Scholar 

  • Cramer F (1956) Einschlu β verbindungen. Angew Chem 68(1956):115–120

    Article  Google Scholar 

  • Crini G (2014) Review: a history of cyclodextrins. Chem Rev 114:10940–10975. https://doi.org/10.1021/cr500081p

    Article  CAS  Google Scholar 

  • Crini G, Fourmentin S, Fenyvesi É, Torri G, Fourmentin M, Morin-Crini N (2018) Cyclodextrins, from molecules to applications. Environ Chem Lett 16:1361–1375. https://doi.org/10.1007/s10311-018-0763-2

    Article  CAS  Google Scholar 

  • Crini G, Fenyvesi É, Szente L (2020) Professor József Szejtli: the godfather of cyclodextrins. In: Crini G, Fourmentin S, Lichtfouse E (eds) the history of cyclodextrins. Springer, Berlin, pp 95–155

    Chapter  Google Scholar 

  • Cserháti T, Szejtli J (1992) Inclusion complexes of some nonionic surfactants with cyclomaltooligosaccharides. Carbohydr Res 224:165–173. https://doi.org/10.1016/0008-6215(92)84102-X

    Article  Google Scholar 

  • Cserháti T, Fenyvesi É, Szejtli J (1983a) Determination of cyclodextrin inclusion complex stability by reversed-phase thin-layer chromatography. Acta Biochim Biophys Hung 18:60–60

    Google Scholar 

  • Cserháti T, Dobrovolszky A, Fenyvesi É, Szejtli J (1983b) Beta-cyclodextrin polymer beads as GC packings. J High Res Chromatogr Chromatogr Comm 6:442–443. https://doi.org/10.1002/jhrc.1240060809

    Article  Google Scholar 

  • Cserháti T, Szente L, Szejtli J (1984) Complex-forming eluent additives in reversed-phase thin-layer chromatography of methylated beta-cyclodextrins. J High Res Chromatogr Chromatogr Comm 7:635–636. https://doi.org/10.1002/jhrc.1240071108

    Article  Google Scholar 

  • Cserháti T, Szejtli J, Fenyvesi É (1988) Reversed-phase thin-layer chromatography of some chlorophenols in the presence of a soluble beta-cyclodextrin polymer. J Chromatogr 439:393–403. https://doi.org/10.1016/S0021-9673(01)83851-6

    Article  Google Scholar 

  • Cserháti T, Szejtli J, Bojarski J (1990a) Charge-transfer chromatographic study on the inclusion complex-formation between of some barbituric-acid with various cyclodextrins. Chromatographia 28:455–458. https://doi.org/10.1007/BF02261059

    Article  Google Scholar 

  • Cserháti T, Szejtli J, Szogyi M (1990b) Charge-transfer chromatographic study on inclusion complex-formation between 2-hydroxypropyl-beta-cyclodextrins and some chlorophenols. J Chromatogr 509:255–262

    Article  Google Scholar 

  • Cserháti T, Fenyvesi É, Szejtli J (1992) Interaction of nonylphenyl and tributylphenyl ethylene-oxide ionic surfactants with highly soluble cyclodextrin derivatives. J Incl Phenom Mol Recognition Chem 14:181–188. https://doi.org/10.1007/BF01029666

    Article  Google Scholar 

  • Cserháti T, Fenyvesi É, Szejtli J, Forgacs E (1995) Water-insoluble beta-cyclodextrin polymer as thin-layer chromatographic sorbent. Chim Oggi Chem Today 13:21–24

    Google Scholar 

  • Cserháti T, Forgacs E, Szejtli J (1996) Inclusion complex formation of antisense nucleotides with hydroxypropyl-beta-cyclodextrin. Int J Pharm 141:1–7. https://doi.org/10.1016/0378-5173(96)04583-8

    Article  Google Scholar 

  • Daruhazi L, Szejtli J, Barcza L (1982) Polarographic-determination of potential guest molecules in the presence of cyclodextrin. Acta Chim Acad Sci Hungarica 110:127–132

    CAS  Google Scholar 

  • D’Souza VT, Lipkowitz KB (1998) Cyclodextrins: introduction. Chem Rev 98:1741–1742

    Article  Google Scholar 

  • Duchêne D (1987) Cyclodextrins and their industrial uses. Éditions de santé, Paris

    Google Scholar 

  • Duchêne D (1991) New trends in cyclodextrins and derivatives. Éditions de santé, Paris

    Google Scholar 

  • Duchêne D, Wouessidjewe D (1996) Pharmaceutical and medical applications of cyclodextrins. In: Dumitriu S (ed) Polysaccharides in medicinal applications. Marcel Dekker Inc, New York, pp 575–602

    Google Scholar 

  • Felméray I, Fenyvesi É, Neumark T, Takács J, Gerlóczy A, Szejtli J (1996) Effect of cyclodextrin bead polymer on wound healing. In: proceedings of the eight international symposium on cyclodextrins (Budapest, March 31-April 2, 1996). Szejtli J and Szente L (eds.), Springer, Dordrecht, pp. 491–494. https://doi.org/10.1007/978-94-011-5448-2

  • Fenichel L, Bakó P, Tóke P, Szente L, Szejtli J (1988) Methylation of cyclodextrins via phase-transfer catalysis. In: proceedings of the fourth international symposium on cyclodextrins (Munich, April 20–22, 1988). Advances in inclusion science. Huber O and Szejtli J (eds.), Kluwer Academic Publishers, Dordrecht, pp. 113–118. https://doi.org/10.1007/978-94-009-2637-0

  • Fenyvesi É, Szilasi M, Zsadon B, Szejtli J, Tüdös F (1982) Water-soluble cyclodextrin polymers and their complexing properties. In: proceedings of the first international symposium on cyclodextrins (Budapest, 30 September-2 October 1981). Szejtli J (ed.), Springer, Dordrecht, pp. 345–356

  • Fenyvesi É, Shirakura O, Szejtli J, Nagai T (1984a) Pharmaceutical interactions in dosage forms and processing. 44. Properties of cyclodextrin polymer as a tableting aid. Chem Pharm Bull 32:665–669

    Article  CAS  Google Scholar 

  • Fenyvesi É, Takayama K, Szejtli J, Nagai T (1984b) Pharmaceutical interactions in dosage forms and processing. 45. Evaluation of cyclodextrin polymer as an additive for furosemide tablet. Chem Pharm Bull 32:670–677

    Article  CAS  Google Scholar 

  • Fenyvesi É, Antal B, Zsadon B, Szejtli J (1984c) Cyclodextrin polymer, a new tablet disintegrating agent. Pharmazie 39:473–475

    Google Scholar 

  • Fenyvesi É, Nagai T, Antal B, Zsadon B, Szejtli J (1984d) Evaluation of cyclodextrin polymer as a disintegrating agent. J Incl Phenom 2:645–654. https://doi.org/10.1007/978-94-009-5376-5_69

    Article  CAS  Google Scholar 

  • Fenyvesi É, Décsei L, Ujházy A, Zsadon B, Szejtli J (1988) Complexes of insoluble cyclodextrin polymers. In: proceedings of the fourth international symposium on cyclodextrins (Munich, April 20–22, 1988). Advances in inclusion science. Huber O and Szejtli J (Eds.), Kluwer Academic Publishers, Dordrecht pp. 227–235. https://doi.org/10.1007/978-94-009-2637-0

  • Fenyvesi É, Cserhati T, Szejtli J (1992) Interaction of some non-ionic tensides with insoluble β-cyclodextrin polymer Chicago, 21 to 24 April 1992). In: Hedges RA (ed) Minutes of the Sixth international symposium on cyclodextrins. Editions de Santé, Paris, pp 267–273

    Google Scholar 

  • Fenyvesi É, Szemán J, Szejtli J (1996) Extraction of PAHs and pesticides from contaminated soils with aqueous CD solutions. J Incl Phenom Mol Recognit Chem 25:229–232. https://doi.org/10.1007/BF01041575

    Article  CAS  Google Scholar 

  • Fenyvesi É, Ujhazy A, Szejtli J, Pütter S, Gan TG (1996a) Controlled release of drugs from CD polymers substituted with ionic groups. In: proceedings of the eight international symposium on cyclodextrins (Budapest, March 31-April 2, 1996). Szejtli J and Szente L (Eds.), Springer, Dordrecht, pp. 443–447. https://doi.org/10.1007/978-94-011-5448-2_98

  • Fenyvesi É, Szemán J, Szejtli J (1996c) Extraction of PAHs and pesticides from contaminated soil with aqueous cyclodextrin solutions. In: proceedings of the eight international symposium on cyclodextrins (Budapest, March 31-April 2, 1996). Szejtli J and Szente L (Eds.), Springer, Dordrecht, pp. 605–608. https://doi.org/10.1007/978-94-011-5448-2

  • Fenyvesi É, Vikmon M, Szemán J, Redenti E, Delcanale M, Ventura P, Szejtli J (1999) Interaction of hydroxy acids with beta-cyclodextrin. J Incl Phenom Mol Recognit Chem 33:339–344. https://doi.org/10.1023/A:1008094702632

    Article  CAS  Google Scholar 

  • Fenyvesi É, Jicsinszky L, Szejtli J, Schwarzenbach R (1999b) Inclusion complexes of UV filters in solution and in solid state. In: proceedings of the ninth international symposium on cyclodextrins (Santiago de Compostela, May 31-June 3, 1998). Torres Labandeira JJ and Vila-Jato JL (Eds.), Springer, Dordrecht, pp. 639–644. https://doi.org/10.1007/978-94-011-4681-4

  • Fenyvesi É, Szejtli J, Trotta F, Redenti E, Ventura P (1999c) Comparison of the solubilizing effect of ethyl carbonate of γ-cyclodextrin to other cyclodextrin derivatives. In: proceedings of the ninth international symposium on cyclodextrins (Santiago de Compostela, May 31-June 3, 1998). Torres Labandeira JJ and Vila-Jato JL (Eds.), Springer Dordrecht, pp. 289–292. https://doi.org/10.1007/978-94-011-4681-4

  • Fenyvesi É, Csabai K, Molnar M, Gruiz K, Muranyi A, Szejtli J (2002) Quantitative and qualitative analysis of RAMEB in soil. J Incl Phenom Mol Recognit Chem 44:413–416. https://doi.org/10.1023/A:1023067819124

    Article  CAS  Google Scholar 

  • Fenyvesi É, Otta K, Kolbe I, Novak C, Szejtli J (2004) Cyclodextrin complexes of UV filters. J Incl Phenom Macrocycl Chem 48:117–123. https://doi.org/10.1023/B:JIPH.0000022518.38097.55

    Article  CAS  Google Scholar 

  • Fenyvesi É, Puskás I, Szente L (2019) Applications of steroid drugs entrapped in cyclodextrins. Environ Chem Lett 17:375–391. https://doi.org/10.1007/s10311-018-0807-7

    Article  CAS  Google Scholar 

  • Fourmentin S, Crini G, Lichtfouse E (2018a) Cyclodextrins Applications in Medicine, Food, Environment and Liquid crystals. Environmental Chemistry for a Sustainable World. Springer, Switzerland. ISBN: 978-3-319-76162-6.

  • Fourmentin S, Crini G, Lichtfouse E (2018b) Cyclodextrins Fundamentals, Reactivity and Analysis. Environmental Chemistry for a Sustainable World. Springer, Switzerland. ISBN: 978-3-319-76159-6

  • French D (1957) The Schardinger dextrins. In: Wolfrom ML (ed) Advances in carbohydrate chemistry. Academic Press Inc., New York, pp 189–260

    Google Scholar 

  • Frömming KH, Szejtli J (1994) Cyclodextrins in pharmacy. Kluwer Academic Publishers, Dordrecht. https://doi.org/10.1007/978-94-015-8277-3

    Book  Google Scholar 

  • Gál-Füzy M, Szente L, Szejtli J, Harangi J (1984) Cyclodextrin-stabilized volatile substances for inhalation-therapy. Pharmazie 39:558–559

    Google Scholar 

  • Gergely V, Sebestyén G, Virag S (1982) Toxicity studies of beta-cyclodextrin. In: proceedings of the first international symposium on cyclodextrins (Budapest, 30 September-2 October 1981). Szejtli J (Ed.), Springer, Dordrecht, pp. 109–113

  • Gerlóczy A, Fónagy A, Szejtli J (1982) Absorption and metabolism of β-cyclodextrin by rats. In: proceedings of the first international symposium on cyclodextrins (Budapest, 30 September-2 October 1981). Szejtli J (Ed.), Springer Dordrecht, pp. 101–108

  • Hedges AR (1998) Industrial applications of cyclodextrins. Chem Rev 98:2035–2044

    Article  CAS  Google Scholar 

  • Hinze WL, Dai F, Frankewich RP, Thimaiah KN, Szejtli J (1999) Cyclodextrins as reagents in analytical chemistry and diagnostics. In: comprehensive supramolecular chemistry. Atwood JL, Davies ED, MacNicol DD and Vögtle F, executive editors. Volume 3: cyclodextrins. Szejtli J and Osa T (Eds.), Pergamon Oxford, London, chapter 20, pp. 587–601. ISBN: 9780080912844

  • Holló J, Szejtli J (1957) The mechanism of starch-iodine reaction. I: critical investigation of actual viewpoints. Period Polytech Chem Eng 1:141–215

    Google Scholar 

  • Holló J, Szejtli J (1957) Untersuchung der Jod-reaktion von stärke. Eur J Lipid Sci 59:94–98. https://doi.org/10.1002/lipi.19570590207

    Article  Google Scholar 

  • Holló J, Szejtli J (1957) The mechanism of starch-iodine reaction. II: experiments performed in order to clear up our problems. 1. Amperometric Titration Period Polytech Chem Eng 1:223–238

    Google Scholar 

  • Holló J, Szejtli J (1958) The mechanism of starch-iodine reaction. III. The supposed structure of iodine-amylose. Period Polytech Chem Eng 2:25–37

    Google Scholar 

  • Holló J, Szejtli J (1959) Über einige probleme bei der sauren stärkehydrolyse I. Mitteilung Starch/Stärke 11:239–244. https://doi.org/10.1002/star.19590110804

    Article  Google Scholar 

  • Holló J, Szejtli J (1959) Über einige probleme bei der sauren stärkehydrolyse II. Mitteilung Starch/Stärke 11:244–246. https://doi.org/10.1002/star.19590110805

    Article  Google Scholar 

  • Holló J, Szejtli J (1968) The reaction of starch with iodine. In: Radley JA (ed) Starch and its derivatives. Chapman and Hall Ltd., London, pp 203–246

    Google Scholar 

  • Holló J, Szejtli J, László E (1959) Das verhalten von stärke im alkalischen medium II. Die alkalische degradation von stärke. Fette Seifen Anstrichmittel 61:759–764. https://doi.org/10.1002/lipi.19590610904

    Article  Google Scholar 

  • Holló J, Szejtli J, Gantner GS (1959) The mechanism of the retrogradation of amylose. Period Polytech Chem Eng 3:163–166

    Google Scholar 

  • Holló J, Szejtli J, Gantner GS (1959) Investigation of the retrogradation of amylose. Period Polytech Chem Eng 3:95–104

    Google Scholar 

  • Holló J, Szejtli J, László E, Vándor E (1962) Neuere beiträge zur chemie der stärkefraktionen. XI. Die herstellung von mit C14 markierter stärke und von glucose-1-phosphat. Starch/Stärke 14:53–58. https://doi.org/10.1002/star.19620140204

    Article  Google Scholar 

  • Holló J, László E, Szejtli J, Lux A (1964) Bedeutung und degradation der stärke im bayer-verfahren. II. Mitteilung: Ursache der verminderung der absetzwirkung. Starch/Stärke 16:167–169. https://doi.org/10.1002/star.19640160506

    Article  Google Scholar 

  • Irie T, Uekama K (1997) Pharmaceutical applications of cyclodextrins. III: toxicological issues and safety evaluation. J Pharm Sci 86:147–162

    Article  CAS  Google Scholar 

  • Iványi R, Jicsinszky J, Juvancz Z, Roos N, Otta K, Szejtli J (2004) Influence of (hydroxy)alkylamino substituents on enantioseparation ability of single-isomer amino-beta-cyclodextrin derivatives in chiral capillary electrophoresis. Electrophoresis 25:2675–2686. https://doi.org/10.1002/elps.200406030

    Article  CAS  Google Scholar 

  • Kainuma K (1984) Starch oligosaccharides: linear, branched, and cyclic. In: starch - chemistry and technology. Whistler RL, BeMiller JN and Paschall EF (Eds.), London: Academic Press Ltd., pp. 125–152.

  • Kato L, Szejtli J, Szente L (1992) Water-soluble complexes of palmitic acid and palmitates for

  • Kis GL, Schoch C, Szejtli J (2003) PCT Appl WO03105867

  • Kolbe I, Vikmon M, Gerloczy A, Szejtli J (2002) Preparation and characterization of Clopidogrel/DIMEB complex. J Incl Phenom Macrocycl Chem 44:183–184. https://doi.org/10.1023/A:1023054915605

    Article  CAS  Google Scholar 

  • Li S, Purdy WC (1992) Cyclodextrins and their applications in analytical chemistry. Chem Rev 92:1457–1470

    Article  CAS  Google Scholar 

  • Lindner K, Szente L, Szejtli J (1981) Food flavoring with beta-cyclodextrin-complexed flavor substances. Acta Aliment 10:175–186

    CAS  Google Scholar 

  • Lipták A, Fügedi P, Szurmai Z, Imre J, Nánási P, Szejtli J (1982) The chemistry of cyclodextrin derivatives. In: proceedings of the first international symposium on cyclodextrins (Budapest, 30 September-2 October 1981). Szejtli J (Ed.), Springer, Dordrecht, pp. 275–287

  • Loeve S, Normand M (2011) How to trust a molecule? The case of cyclodextrins entering the nanorealm. In: Zülsdorf TB, Coenen C, Ferrari A, Fiedeler U, Milburn C, Wienroth M (eds) Quantum engagements: Social reflections of nanoscience and emerging technologies. IOS Press, Heidelberg, pp 1–23

    Google Scholar 

  • Loftsson T, Brewster M (1996) Pharmaceutical applications of cyclodextrins. I: drug solubilization and stabilization. J Pharm Sci 85:1017–1025

    Article  CAS  Google Scholar 

  • Loftsson T, Duchêne D (2007) Cyclodextrins and their pharmaceutical applications. Int J Pharm 329:1–11. https://doi.org/10.1016/j.ijpharm.2006.10.044

    Article  CAS  Google Scholar 

  • Mikuni K, Nakanishi K, Hashimoto H, Jicsinszky L, Fenyvesi E, Szejtli J, Szente L (2000) Japanese patent JP 2000191704

  • Morin-Crini N, Fourmentin S, Crini G (eds) (2015) Cyclodextrines. Besançon, PUFC, p 370

    Google Scholar 

  • Morin-Crini N, Fourmentin M, Fourmentin S, Torri G, Crini G (2019) Synthesis of silica materials containing cyclodextrin and their applications in wastewater treatment. Environ Chem Lett 17:683–696. https://doi.org/10.1007/s10311-018-00818-0

    Article  CAS  Google Scholar 

  • Morva A, Fenyvesi É, Roos N, Zsadon B, Szejtli J (1999) Sulfated cyclodextrin derivatives. In: proceedings of the ninth international symposium on cyclodextrins (Santiago de Compostela, May 31-June 3, 1998). Torres Labandeira JJ and Vila-Jato JL (Eds.), Springer, Dordrecht, pp. 53–56. https://doi.org/10.1007/978-94-011-4681-4

  • Novák C, Pokol G, Sztatisz J, Szente L, Szejtli J (1993) Determination of the degree of substitution of hydroxypropylated beta-cyclodextrins by differential scanning calorimetry. Anal Chim Acta 282:313–316. https://doi.org/10.1016/0003-2670(93)80216-8

    Article  Google Scholar 

  • Olah J, Cserhati T, Szejtli J (1988) Beta-cyclodextrin enhanced biological detoxification of industrial wastewaters. Wat Res 22:1345–1351. https://doi.org/10.1016/0043-1354(88)90090-5

    Article  CAS  Google Scholar 

  • Otta K, Fenyvesi É, Zsadon B, Szejtli J, Tüdös F (1982) Cyclodextrin polymers as specific sorbents. In: proceedings of the first international symposium on cyclodextrins (Budapest, 30 September-2 October 1981). Szejtli J (Ed.), Springer, Dordrecht, pp. 357–362

  • Otta K, Zsadon B, Faragó J, Szejtli J, Tüdos F (1988) Cyclodextrin-cellulose copolymers. In: proceedings of the fourth international symposium on cyclodextrins (Munich, April 20–22, 1988). Advances in inclusion science. Huber O and Szejtli J (Eds.), Kluwer Academic Publishers, Dordrecht, pp. 139–143. https://doi.org/10.1007/978-94-009-2637-0

  • Szejtli J, Osa T (eds) (1996) Cyclodextrins. In: Comprehensive supramolecular chemistry. Pergamon Oxford, London

  • Pitha J, Szente L, Szejtli J (1983) Molecular encapsulation of drugs by cyclodextrins and congeners. In: Bruck SD (ed) Controlled drug delivery. CRC Press FL, Boca Raton, pp 125–148

    Google Scholar 

  • Redenti E, Szente L, Szejtli J (2000) Drug/cyclodextrin/hydroxy acid multicomponent systems. Properties and pharmaceutical applications. J Pharm Sci 89:1–8. https://doi.org/10.1002/(SICI)1520-6017(200001)89:1%3c1::AID-JPS1%3e3.0.CO;2-W

    Article  CAS  Google Scholar 

  • Redenti E, Szente L, Szejtli J (2001) Cyclodextrin complexes of salts of acidic drugs: thermodynamic properties, structural features, and pharmaceutical applications. J Pharm Sci 90:979–986. https://doi.org/10.1002/jps.1050

    Article  CAS  Google Scholar 

  • Richter M, Szejtli J (1966) Photometrische titration der stärkepolysaccharide mit Jod. III Die automatische titration Die Stärke 18:95–100. https://doi.org/10.1002/star.19660180402

    Article  CAS  Google Scholar 

  • Saenger W (1980) Cyclodextrin inclusion-compounds in research and industry. Angew Chem Int Ed 19:344–362. https://doi.org/10.1002/anie.198003441

    Article  Google Scholar 

  • Saenger W (1984) Structural aspects of cyclodextrins and their inclusion complexes. In: Atwood JL, Davies JED, MacNicol DD (eds) Inclusion compounds. Academic Press, London, pp 231–260

    Google Scholar 

  • Saenger W, Noltemeyer M, Manor PC, Hingerty B, Klar B (1976) “Induced fit” type complex formation of the model enzyme α-cyclodextrin. Bioorg Chem 5:187–195. https://doi.org/10.1016/0045-2068(76)90007-9

    Article  CAS  Google Scholar 

  • Smolková-Keulemansová E (1982) Cyclodextrins as stationary phases in chromatography. J Chromatogr 251:17–34

    Article  Google Scholar 

  • Stella VJ, Rajewski RA (1997) Cyclodextrins: their future in drug formulation and delivery. Pharm Res 14:556–567

    Article  CAS  Google Scholar 

  • Szabo P, Ferenczy T, Serfözö J, Szejtli J, Liptak A (1982) Absorption and elimination of cyclodextrin derivatives by rabbits and rats. In: Proceedings of the first international symposium on cyclodextrins (Budapest, 30 September-2 October 1981), Szejtli J (Ed.), Springer Dordrecht, pp. 115–122

  • Szejtli J (1963) Untersuchung der Jod-amylose-einschlussverbindung. Period Polytech Chem Bp 7:259–288

    CAS  Google Scholar 

  • Szejtli J (1965) Acid hydrolysis of alginic acid. Acta Chim Acad Sci Hung 46:369–379

    Google Scholar 

  • Szejtli J (1965) Acid hydrolysis of dextran. Acta Chim Acad Sci Hung 46:153–162

    Google Scholar 

  • Szejtli J (1965) Acid hydrolysis of starch. Acta Chim Acad Sci Hung 46:77–84

    CAS  Google Scholar 

  • Szejtli J (1966) Zusammenhang zwischen zusammensetzung und IR-spektrum bei alginsäuren verschiedener Herkunft. Mol Nutr Food Res 10:291–296. https://doi.org/10.1002/food.19660100403

    Article  CAS  Google Scholar 

  • Szejtli J (1969) Molecular configuration of amylose and non-statistical character of its hydrolysis. Kémiai Közlemények 31:59–60

    CAS  Google Scholar 

  • Szejtli J (1971) Relationship between conformation of glucopyranoside units and molecular configuration of amylose. Starch/Stärke 23:295–300. https://doi.org/10.1002/star.19710230902

    Article  CAS  Google Scholar 

  • Szejtli J (1975) Säurehydrolyse glykosidischer bindungen (acid hydrolysis of glycosidic bonds). VEB Fachbuchverlag, Übersetzung aus dem Ungarischen ins Deutsche. Leipzig, p 398

    Google Scholar 

  • Szejtli J (1977) Einige anwendungsmöglichkeiten der cyclodextrine in der arzneimittelindustrie (some application possibilities of cyclodextrins in pharmaceutical industries). Starch/Stärke 29:26–33. https://doi.org/10.1002/star.19770290107

    Article  CAS  Google Scholar 

  • Szejtli J (1977) Interaction of hydrochloric-acid with cyclodextrin. Starch/Stärke 29:410–413. https://doi.org/10.1002/star.19770291204

    Article  CAS  Google Scholar 

  • Szejtli J (1978) Neue untersuchungsmethoden in der cyclodextrinchemie (new analytical methods in chemistry of cyclodextrins). Starch/Stärke 30:427–431. https://doi.org/10.1002/star.19780301207

    Article  CAS  Google Scholar 

  • Szejtli J (1980) Complexing properties of substituted cyclodextrins and cyclodextrin polymers in aqueous-solutions. Abstr Pap Am Chem Soc 179:65–66

    Google Scholar 

  • Szejtli J (1981) Enhancement of drug bioavailability by cyclodextrins. Starch/Stärke 33:387–390. https://doi.org/10.1002/star.19810331108

    Article  CAS  Google Scholar 

  • Szejtli J (1982) Cyclodextrins in food, cosmetics and toiletries. Starch/Stärke 34:379–385. https://doi.org/10.1002/star.19820341106

    Article  CAS  Google Scholar 

  • Szejtli J (1982) Cyclodextrins and their inclusion complexes. Akadémiai Kiadó, Budapest, p 296

    Google Scholar 

  • Szejtli J (1982b) Cyclodextrins in foods, cosmetics and toiletries. In: proceedings of the first international symposium on cyclodextrins (Budapest, 30 September–2 October 1981). Szejtli J (Ed.), Reidel Publishing Company, Dordrecht, pp. 469–480. https://doi.org/10.1007/978-94-009-7855-3_55

  • Szejtli J (1983) Physiological effects of cyclodextrins on plants. Starch/Stärke 35:433–438. https://doi.org/10.1002/star.19830351208

    Article  CAS  Google Scholar 

  • Szejtli J (1983) Dimethyl-β-cyclodextrin as parenteral drug carrier. J Incl Phenom 1:135–150

    Article  CAS  Google Scholar 

  • Szejtli J (1984) Limits of cyclodextrin application in oral drug preparations. In: Atwood JL, Davies JED, Osa T (eds) Clathrate compounds, molecular inclusion phenomena, and cyclodextrins: advances in inclusion science. D. Reidel Publishing Company, Dordrecht, pp 487–502

    Chapter  Google Scholar 

  • Szejtli J (1984) Industrial applications of cyclodextrins. In: Atwood JL, Davies JED, MacNicol DD (eds) Inclusion compounds. Academic Press, London, pp 331–390

    Google Scholar 

  • Szejtli J (1984) Highly soluble β-cyclodextrin derivatives. Starch/Stärke 36:429–432. https://doi.org/10.1002/star.19840361207

    Article  CAS  Google Scholar 

  • Szejtli J (1985) Cyclodextrins in pesticides. Starch/Stärke 37:382–386. https://doi.org/10.1002/star.19850371106

    Article  CAS  Google Scholar 

  • Szejtli J (1985) Cyclodextrins: a new group of industrial basic materials. Food/Nahrung 29:911–924

    Article  CAS  Google Scholar 

  • Szejtli J (1986) Cyclodextrins and their use in separations. Abstracts Papers Am Chem Soc 191:80–81

    Google Scholar 

  • Szejtli J (1986) Cyclodextrins in biotechnology. Starch/Stärke 38:388–390. https://doi.org/10.1002/star.19860381107

    Article  CAS  Google Scholar 

  • Szejtli J (1987) The metabolism, toxicity and biological effects of cyclodextrins. In: Duchêne D (ed) Cyclodextrins and their industrial uses. Éditions de santé, Paris, pp 173–210

    Google Scholar 

  • Szejtli J (1987) Reduction of phytotoxicity of nonionic tensides by cyclodextrins. J Incl Phenom Macrocyl Chem 5:421–425

    Article  Google Scholar 

  • Szejtli J (1987) Cyclodextrins lessen the membrane damaging effect of nonionic tensides. J Incl Phenom Macrocyl Chem 5:433–437

    Article  Google Scholar 

  • Szejtli J (1987) Application of cyclodextrins in the chromatography. Starch-Stärke 39:357–362. https://doi.org/10.1002/star.19870391006

    Article  CAS  Google Scholar 

  • Szejtli J (1987a) Cyclodextrins and the molecular encapsulation. Chimicaoggi 17–21

  • Szejtli J (1988) Cyclodextrins in diagnostics. Kontakte (Darmstadt) 1:31–36

    Google Scholar 

  • Szejtli J (1988) Cyclodextrin technology. Kluwer Academic Publishers, Dordrecht, p 450

    Book  Google Scholar 

  • Szejtli J (1988c) Fungicidal activity of benomyl in presence of β-cyclodextrin. In: Proceedings of the fourth international symposium on cyclodextrins (Munich, April 20–22, 1988). Advances in inclusion science. Huber O and Szejtli J (Eds.), Kluwer Academic Publishers, Dordrecht pp. 561–568. https://doi.org/10.1007/978-94-009-2637-0

  • Szejtli J (1989) Downstream processing using cyclodextrins. Trends Biotechnol 7:171–174. https://doi.org/10.1016/0167-7799(89)90094-

    Article  Google Scholar 

  • Szejtli J (1990) The cyclodextrins and their applications in biotechnology. Carbohydr Polym 12:375–392. https://doi.org/10.1016/0144-8617(90)90088-A

    Article  CAS  Google Scholar 

  • Szejtli J (1991) Complexation of metal ions by cyclodextrins. Cheminform 22:313–313

    Google Scholar 

  • Szejtli J (1991) The use of cyclodextrins in biotechnological operations. In: Duchêne D (ed) New trends in cyclodextrins and derivatives. Éditions de santé, Paris, pp 595–626

    Google Scholar 

  • Szejtli J (1991c) Helical and cyclic structures in starch chemistry. In: biotechnology of amylopectin oligosaccharides. Friedman R (Ed.), ACS Symposium Series, Washington, 458: 2–10. https://doi.org/10.1021/bk-1991-0458.ch001

  • Szejtli J (1992) The properties and potential uses of cyclodextrin derivatives. J Incl Phenom Mol Recognit 14:25–36. https://doi.org/10.1007/BF01041363

    Article  CAS  Google Scholar 

  • Szejtli J (1992a) Cyclodextrins in the reduction of environmental pollution. In: Minutes of the Sixth international symposium on cyclodextrins (Chicago, 21 to 24 April 1992). Hedges RA (Ed.), Editions de Santé, Paris, pp. 380–390

  • Szejtli J (1994) Medicinal applications of cyclodextrins. Med Res Rev 14:353–386. https://doi.org/10.1002/med.2610140304

    Article  CAS  Google Scholar 

  • Szejtli J (1995) Selectivity/structure correlation in cyclodextrin chemistry. Supramol Chem 6:217–223. https://doi.org/10.1080/10610279508032537

    Article  CAS  Google Scholar 

  • Szejtli J (1996a) Historical background. In: comprehensive supramolecular chemistry. Atwood JL, Davies ED, MacNicol DD and Vögtle F, executive editors. Cyclodextrins. Szejtli J and Osa T (Eds.), Pergamon Oxford, London, pp. 1–4. ISBN: 9780080912844

  • Szejtli J (1996b) Chemistry, physical and biological properties of cyclodextrins. In: comprehensive supramolecular chemistry. Atwood JL, Davies ED, MacNicol DD and Vögtle F, executive editors. Volume 3: Cyclodextrins. Szejtli J and Osa T (Eds), Pergamon Oxford, London, pp. 5–40. ISBN: 9780080912844

  • Szejtli J (1996c) Inclusion of guest molecules, selectivity and molecular recognition by cyclodextrins. In: comprehensive supramolecular chemistry. Atwood JL, Davies ED, MacNicol DD and Vögtle F, executive editors. Volume 3: Cyclodextrins. Szejtli J and Osa T (Eds.), Pergamon Oxford, London, pp. 189–203. ISBN: 9780080912844

  • Szejtli J (1996d) Use of cyclodextrins in chemical products and processes. In: comprehensive supramolecular chemistry. Atwood JL, Davies ED, MacNicol DD and Vögtle F, executive editors. Volume 3: Cyclodextrins. Szejtli J and Osa T (Eds.), Pergamon Oxford, London, pp. 603–614. ISBN: 9780080912844

  • Szejtli J (1997) Utilization of cyclodextrins in industrial products and processes. J Mater Chem 7:575–587. https://doi.org/10.1039/A605235E

    Article  CAS  Google Scholar 

  • Szejtli J (1998) Introduction and general overview of cyclodextrin chemistry. Chem Rev 98:1743–1753. https://doi.org/10.1021/cr970022c

    Article  CAS  Google Scholar 

  • Szejtli J (2002) The role of cyclodextrins in chiral selective chromatography. Trends Anal Chem 21:379–388

    Article  Google Scholar 

  • Szejtli J (2003) Cyclodextrins in the textile industry. Starch-Stärke 55:191–196. https://doi.org/10.1002/star.200390050

    Article  CAS  Google Scholar 

  • Szejtli J (2004) Past, present and future of cyclodextrin research. Pure Appl Chem 76:1825–1845. https://doi.org/10.1351/pac200476101825

    Article  CAS  Google Scholar 

  • Szejtli J (2004) Cyclodextrins. In: Tomasik P (ed) Chemical and functional properties of food saccharides. CRC Press, New-York, pp 272–290

    Google Scholar 

  • Szejtli J (2004) Cyclodextrins: applications. Encyclopedia of supramolecular chemistry. Marcel Dekker Inc, New York, pp 405–413

    Chapter  Google Scholar 

  • Szejtli J (2005) Cyclodextrin complexed generic drugs are generally not bio-equivalent with the reference products: therefore the increase in number of marketed drug/cyclodextrin formulations is so slow. J Incl Phenom Macrocycl Chem 52:1–11. https://doi.org/10.1007/s10847-004-7161-z

    Article  CAS  Google Scholar 

  • Szejtli J, Augustat S (1966) Über die configuration der amylosemoleküle in wäβriger lösung. Die Stärke 18:38–42

    Article  CAS  Google Scholar 

  • Szejtli J, Bánky-Elöd, Fónagy A (1976) Ungarische Patent-anmeldung CI 1661

  • Szejtli J, Gy S (1979) Resorption, metabolism and toxicity studies on the peroral application of beta-cyclodextrin. Starch/Stärke 31:385–389. https://doi.org/10.1002/star.19790311108

    Article  CAS  Google Scholar 

  • Szejtli J, Szente L (1979) Stabilization of volatile, oxidizable flavor substances by beta-cyclodextrin. Planta Med 36:292–293

    Google Scholar 

  • Szejtli J, Szente L (1981) Interaction between indomethacin and beta-cyclodextrin. Pharmazie 36:694–698

    CAS  Google Scholar 

  • Szejtli J, Szente L (2005) Elimination of bitter, disgusting tastes of drugs and foods by cyclodextrins. Eur J Pharm Biopharm 61:115–125. https://doi.org/10.1016/j.ejpb.2005.05.006

    Article  CAS  Google Scholar 

  • Szejtli J, Zs B (1976) Acid-hydrolysis of beta-cyclodextrin. Acta Chim Acad Sci Hung 91:73–80

    CAS  Google Scholar 

  • Szejtli J, Zs B (1977) Crystalline hydrogen halide complexes of cyclodextrins. Acta Chim Acad Sci Hung 94:383–390

    CAS  Google Scholar 

  • Szejtli J, Zs B (1979) Turbidimetric study of the crystallization of beta-cyclodextrin inclusion complexes. Acta Chim Acad Sci Hung 99:433–436

    CAS  Google Scholar 

  • Szejtli J, Richter M, Augustat S (1967) Molecular configuration of amylose and its complexes in aqueous solutions: Part II—relation between the DP of helical segments of the amylose-iodine complex and the equilibrium concentration of free iodine. Biopolymers 5:5–16. https://doi.org/10.1002/bip.1967.360050103

    Article  CAS  Google Scholar 

  • Szejtli J, Richter M, Augustat S (1967) Molecular configuration of amylose and its complexes in aqueous solutions: Part III—investigation of the DP distribution of helical segments in amylose-iodine complexes. Biopolymers 5:17–26. https://doi.org/10.1002/bip.1967.360050104

    Article  CAS  Google Scholar 

  • Szejtli J, Richter M, Augustat S (1968) Molecular configuration of amylose and its complexes in aqueous solutions: IV—determination of DP of amylose by measuring the concentration of free iodine in solution of amylose-iodine complex. Biopolymers 6:27–41. https://doi.org/10.1002/bip.1968.360060103

    Article  CAS  Google Scholar 

  • Szejtli J, Szente L, Kolta R, Lindner K, Zilahy T, Köszegi B (1977a) Hungarian Patent 174, 699

  • Szejtli J, László E, Bánky G, Seres G (1977b) Hungarian Patent 175, 584

  • Szejtli J, Szente L, Kis G, Jakus K, Horváth G, Radványi B (1977c) Hungarian Patent 174, 699

  • Szejtli J, Fenyvesi É, Zsadon B (1978) Cyclodextrinpolymere. Starch/Stärke 30:127–131. https://doi.org/10.1002/star.19780300407

    Article  CAS  Google Scholar 

  • Szejtli J, Zs B, Kajtar M (1978) Cyclodextrin dye inclusion compounds. Magyar Kémiai Folyóirat 84:68–78

    CAS  Google Scholar 

  • Szejtli J, Budai Zs, Dávid A (1978c) Hungarian Patent 172, 936

  • Szejtli J, Szente L, Dávid A, Virág S, Sebestyén G, Mándi A (1978d) Hungarian Patent 176, 215

  • Szejtli J, Bánky-Elöd E, Stadler A, Tetenyi P, Hethelyi I (1979) Enrichment of the unsaturated components in fatty-acid ester mixtures by cyclodextrin complex-formation. Acta Chim Acad Sci Hung 99:447–452

    CAS  Google Scholar 

  • Szejtli J, Szente L, Bánky-Elöd EI (1979) Molecular encapsulation of volatile, easily oxidizable labile flavor substances by cyclodextrins. Acta Chim Acad Sci Hung 100:27–46

    Google Scholar 

  • Szejtli J, Gerloczy A, Fonagy A (1980) Intestinal-absorption of C-14-labeled beta-cyclodextrin in rats. Arzneimittel Forschung Drug Res 30:808–810

    CAS  Google Scholar 

  • Szejtli J, Bolla-Pusztai E, Szabo P, Ferenczy T (1980) Enhancement of stability biological effect of cholecalciferol by beta-cyclodextrin complexation. Pharmazie 35:779–787

    CAS  Google Scholar 

  • Szejtli J, Lipták A, Jodál I, Fügedi P, Nánási P, Neszmélyi A (1980) Synthesis and 13C-NMR spectroscopy of methylated beta-cyclodextrins. Starch/Stärke 32:165–169. https://doi.org/10.1002/star.19800320506

    Article  CAS  Google Scholar 

  • Szejtli J, Szejtli M, Szente L (1980c) Hungarian Patent 02027

  • Szejtli J, Szente L, Gál-Füzy M, Szejtli M, Köszegi B (1980d) Hungarian Patent 1287

  • Szejtli J, Bolla E, Stadler A (1980g) Hungarian Patent 1141

  • Szejtli J, Zsadon B, Fenyvesi E, Szilasi M, Décsei L (1980h) Hungarian Patent 488/83

  • Szejtli J, Zsadon B, Fenyvesi É, Otta K, Tüdős F (1980i) Hungarian Patent 181 733

  • Szejtli J, Gerlóczy A, Sebestyén G, Fónagy A (1981) Influencing of resorption and side-effects of salicyclic-acid by complexing with beta-cyclodextrin. Pharmazie 36:283–286

    CAS  Google Scholar 

  • Szejtli J, Bolla-Pusztai E, Kajtár M (1982) The beta-cyclodextrin inclusion complex of menadione (vitamin K3). Pharmazie 37:725–728

    CAS  Google Scholar 

  • Szejtli J, Tetenyi M, Rajki E (1983a) Effect of cyclodextrin treatment on the development and yield of wheat. Acta Agron Acad Sci Hung 32:74–78

    CAS  Google Scholar 

  • Szejtli J, Gerlóczy A, Fónagy A (1983b) Improvement of the absorption of H-3 labeled cholecalciferol by formation of its cyclodextrin complex. Pharmazie 38:100–101

    CAS  Google Scholar 

  • Szejtli J, Bolla-Pusztai E, Tardylengyel M, Szabo P, Ferenczy T (1983c) Preparation, properties and biological activity of beta-cyclodextrin inclusion complex of menadione. Pharmazie 38:189–193

    CAS  Google Scholar 

  • Szejtli J, Stadler-Szöke A, Vikmon A, Piukovich S, Inczefy I, Kulcsár G, Zlatos G (1983d) Hungarian Patent 35,172

  • Szejtli J, Szente L, Kálói K, Marton J, Gerlóczy A (1985a) Hungarian Patent 75, 85

  • Szejtli J, Cserháti T, Szögyi M (1986) Interactions between cyclodextrins and cell-membrane phospholipids. Carbohydr Polym 6:35–49. https://doi.org/10.1016/0144-8617(86)90011-1

    Article  CAS  Google Scholar 

  • Szejtli J, Zsadon B, Cserhati T (1987) Cyclodextrin use in separations. ACS Symposium Series. Am Chem Soc (Ed.), 342: 200-217

  • Szejtli J, Zsadon B, Horvath OK, Ujhazy A, Fenyvesi É (1991) Hungarian Patent 54, 506

  • Szejtli J, Vikmon M, Szente L, Szemán J (2004) Hungarian Patent Application

  • Szejtli J, Fenyvesi E, Zoltán S, Zsadon B, Tüdös F (1980e) Hungarian Patent 177,419; Belgium Patent 877,653; US Patent 4,274,985; German Patent 2,927,733

  • Szejtli J, Fenyvesi É, Zoltan S, Zsadon B, Horvath O, Tüdős F (1981b) US Patent 4,274,985

  • Szejtli J, Zsadon B, Fenyvesi É, Otta K, Tüdős F (1982b) US Patent 4,357,468

  • Szejtli J, Fenyvesi É, Zsadon B, Szilasi M, Décsei L (1985b) US Patent 4,535,152

  • Szemán J, Fenyvesi É, Szejtli J, Ueda H, Machida Y, Nagai T (1987) Water-soluble cyclodextrin polymers - their interaction with drugs. J Incl Phenom 5:427–431. https://doi.org/10.1007/BF00664098

    Article  Google Scholar 

  • Szemán J, Ueda H, Szejtli J, Fenyvesi E, Machida Y, Nagai T (1987) Complexation of several drugs with water-soluble cyclodextrin polymer. Chem Pharm Bull 35:282–288

    Article  Google Scholar 

  • Szemán J, Ganzler K, Salgo A, Szejtli J (1996) Effect of the degree of substitution of cyclodextrin derivatives on chiral separations by high-performance liquid chromatography and capillary electrophoresis. J Chromatogr 728:423–431. https://doi.org/10.1016/0021-9673(95)01312-1

    Article  Google Scholar 

  • Szente L (1994) Cyclodextrins - perseverance pays off. J Incl Phenom Mol Recognit Chem 18:207–209. https://doi.org/10.1007/BF00708727

    Article  CAS  Google Scholar 

  • Szente L (2004) Prof. Dr. Szejtli József. 1933–2004. Cyclodextrin News 18:268-269

  • Szente L, Fenyvesi É (2016) József Szejtli and his important findings in the pharmaceutical application of cyclodextrins. Magyar Kémiai Folyóirat 122:60–64

    Google Scholar 

  • Szente L, Szejtli J (1981) Cyclodextrin complex of a volatile insecticide (DDVP). Acta Chim Acad Sci Hung 107:195–202

    CAS  Google Scholar 

  • Szente L, Szejtli J (1986) Molecular encapsulation of natural and synthetic coffee flavor with β-cyclodextrin. J Food Sci 51:1024–1027. https://doi.org/10.1111/j.1365-2621.1986.tb11224.x

    Article  CAS  Google Scholar 

  • Szente L, Szejtli J (1987) Formulation of propolis with beta-cyclodextrin. Acta Pharm Technol Int J Drug Formul Biopharm 33:218221

    Google Scholar 

  • Szente L, Szejtli J (1987) Stabilization of flavors by cyclodextrins. Abstr Pap Am Chem Soc 194:96–97

    Google Scholar 

  • Szente L, Szejtli J (1988) Stabilization of flavors by cyclodextrins. ACS Symp Ser 370:148–157

    Article  CAS  Google Scholar 

  • Szente L, Szejtli J (1996) Cyclodextrins in pesticides. In: comprehensive supramolecular chemistry. Atwood JL, Davies ED, MacNicol DD and Vögtle F, executive editors. Volume 3: Cyclodextrins. Szejtli J and Osa T (Eds.), London: Pergamon Oxford, UK, chapter 17, pp. 503–514. ISBN: 9780080912844

  • Szente L, Szejtli J (1998) Non-chromatographic analytical uses of cyclodextrins. Analyst 123:735–741. https://doi.org/10.1039/a707413a

    Article  CAS  Google Scholar 

  • Szente L, Szejtli J (1999) Highly soluble cyclodextrin derivatives: chemistry, properties, and trends in development. Adv Drug Del Rev 36:17–28. https://doi.org/10.1016/S0169-409X(98)00092-1

    Article  CAS  Google Scholar 

  • Szente L, Szejtli J (2004) Cyclodextrins as food ingredients. Trends Food Sci Technol 15:137–142. https://doi.org/10.1016/j.tifs.2003.09.019

    Article  CAS  Google Scholar 

  • Szente L, Szejtli J, Gál-Füzy M (1984) Non-oral drug preparations containing cyclodextrin complexes. J Incl Phenom Macrocycl Chem 2:631–636

    Article  CAS  Google Scholar 

  • Szente L, Apostol I, Szejtli J (1984) Suppositories containing beta-cyclodextrin complexes: 1. Stab Stud Pharm 39:697–699

    CAS  Google Scholar 

  • Szente L, Szejtli J, Gál-Füzy M (1984c) Non-oral drug preparations containing cyclodextrin complexes. In: Clathrate compounds, molecular inclusion phenomena, and cyclodextrins. Advances in inclusion science. Atwood JL, Davies JED and Osa T (Eds.), D. Reidel Publishing Company, Dordrecht, pp. 631–636. https://doi.org/10.1007/978-94-009-5376-5

  • Szente L, Apostol I, Gerlóczy A, Szejtli J (1985) Suppositories containing beta-cyclodextrin complexes: 2. Dissolution Absorpt Stud Pharm 40:406–407

    CAS  Google Scholar 

  • Szente L, Szejtli J, Chau LT (1987) Effect of cyclodextrin complexation on the reduction of menthone and isomenthone. J Incl Phenom Macrocycl Chem 5:439–442. https://doi.org/10.1007/BF00664100

    Article  CAS  Google Scholar 

  • Szente L, Gál-Füzy M, Szejtli J (1988) Tea aromatization with beta-cyclodextrin complexed flavors. Acta Aliment 17:193–199

    CAS  Google Scholar 

  • Szente L, Magisztrak H, Szejtli J (1990) Formulation of insect controlling agents with beta-cyclodextrin. Pestic Sci 28:7–16

    Article  CAS  Google Scholar 

  • Szente L, Szejtli J, Kato L (1992) Solubilization of fatty acids and similar lipids by methylated cyclodextrins Chicago, 21–24 April 1992). In: Hedges RA (ed) Minutes of the Sixth international symposium on cyclodextrins. Éditions de santé, Paris, pp 340–344

    Google Scholar 

  • Szente L, Szejtli J, Szemán J, Kato L (1993) Fatty-acid cyclodextrin complexes: properties and applications. J Incl Phenom Mol Recognit Chem 16:339–354. https://doi.org/10.1007/BF00708714

    Article  CAS  Google Scholar 

  • Szente L, Szejtli J, Kis GL (1998) Spontaneous opalescence of aqueous γ-cyclodextrin solutions: complex formation or self-aggregation? J Pharm Sci 87:778–781. https://doi.org/10.1021/js9704341

    Article  CAS  Google Scholar 

  • Szente L, Mikuni K, Hashimoto H, Szejtli J (1998) Stabilization and solubilization of lipophilic natural colorants with cyclodextrins. J Incl Phenom Mol Recognit Chem 32:81–89. https://doi.org/10.1023/A:1007970501916

    Article  CAS  Google Scholar 

  • Szente L, Fenyvesi É, Szejtli J (1999) Entrapment of iodine with cyclodextrins: Potential application of cyclodextrins in nuclear waste management. Environ Sci Technol 33:4495–4498. https://doi.org/10.1021/es981287r

    Article  CAS  Google Scholar 

  • Szente L, Fenyvesi É, Szejtli J (1999b) Application of cyclodextrins in nuclear waste management. In: proceedings of the ninth international symposium on cyclodextrins (Santiago de Compostela, May 31-June 3, 1998). Torres Labandeira JJ and Vila-Jato JL (Eds.), Springer Dordrecht, pp. 577–582. https://doi.org/10.1007/978-94-011-4681-4

  • Szente L, Szilágyi E, Szejtli G (2016) CycloLab Ltd: from the Chinoin biochemical lab to the pharmaceutical factory. Magyar Kémiai Folyóirat 122:57–59

    Google Scholar 

  • Szogyi M, Cserhati T, Szejtli J (1987) Cyclodextrins lessen the membrane damaging effect of nonionic tensides. J Incl Phenom 5:433–437

    Article  CAS  Google Scholar 

  • Thoma JA, Stewart L (1965) Cycloamyloses. In starch, chemistry and technology. Whistler RL, and Paschall EF (Eds.), Academic Press, New York, volume 1: Fundamental aspects, pp. 209–249

  • Uekama K, Otagiri M (1987) Cyclodextrins in drug carrier systems. Crit Rev Ther Drug Carrier Syst 3:1–40

    CAS  Google Scholar 

  • Uekama K, Hirayama F, Irie T (1994) Application of cyclodextrins in pharmaceutical preparations. Drug Target Del 3:411–456

    CAS  Google Scholar 

  • Ujházy A, Zsadon B, Szejtli J (1988) Gel chromatographic separation of proteins on cyclodextrin bead polymers. In: proceedings of the fourth international symposium on cyclodextrins (Munich, April 20–22, 1988). Advances in inclusion science. Huber O and Szejtli J (Eds.), Kluwer Academic Publishers, Dordrecht, pp. 497–501. https://doi.org/10.1007/978-94-009-2637-0

  • Ujházy A, Zsadon B, Szejtli J (1989) Gel chromatographic separation of proteins on cyclodextrin bead polymer stationary phases. J Liq Chromatogr 12:2877–2885. https://doi.org/10.1007/978-94-009-2637-0_70

    Article  Google Scholar 

  • Varga G, Szemán J, Szente L, Csabai P, Kékesi K (2005) PCT Int. Appl, WO, p 2005105257

    Google Scholar 

  • Verstichel S, De Wilde B, Fenyvesi É, Szejtli J (2004) Investigation of the aerobic biodegradability of several types of cyclodextrins in a laboratory-controlled composting test. J Polym Environ 12:47–55. https://doi.org/10.1023/B:JOOE.0000010050.52967.94

    Article  CAS  Google Scholar 

  • Villiers A (1891) Sur la transformation de la fécule en dextrine par le ferment butyrique. Chimie organique: Compte rendus des séances de l’Académie des Sciences (France) Février, CXII, pp. 435–437

  • Zs B, Szejtli J (1981) Cyclodextrin inclusion complexes of 2-chloroethyl phosphonic acid. Acta Chim Acad Sci Hung 107:231–236

    Google Scholar 

  • Zsadon B, Szilasi M, Szejtli J, Seres G, Tüdös F (1978) Chromatography of alpha-, beta- and gamma-cyclodextrin on dextran gel columns. Starch/Stärke 30:276–279. https://doi.org/10.1002/star.19780300807

    Article  CAS  Google Scholar 

  • Zsadon B, Otta KH, Tüdös F, Szejtli J (1979) Separation of cyclodextrins by high-performance liquid-chromatography. J Chromatogr 171:490–492. https://doi.org/10.1016/S0021-9673(00)91004-5

    Article  Google Scholar 

  • Zsadon B, Szilasi M, Otta KH, Tüdös F, Fenyvesi É, Szejtli J (1979) Characterization and chromatographic behavior of cyclodextrin polymers. Acta Chim Acad Sci Hung 100:265–273

    CAS  Google Scholar 

  • Zsadon B, Szilasi M, Tüdös F, Fenyvesi É, Szejtli J (1979) Inclusion chromatography of amino acids on beta-cyclodextrin-polymer gel beds. Starch/Stärke 31:11–12. https://doi.org/10.1002/star.19790310104

    Article  CAS  Google Scholar 

  • Zsadon B, Szilasi M, Tüdös F, Szejtli J (1981) Inclusion chromatography of alkaloids on cyclodextrin polymer gel. J Chromatogr 208:109–112. https://doi.org/10.1016/S0021-9673(00)87970-4

    Article  CAS  Google Scholar 

  • Zsadon B, Decsei L, Szilasi M, Tüdös F, Szejtli J (1983) Inclusion chromatography of enantiomers of indole alkaloids on a cyclodextrin polymer stationary phase. J Chromatogr 270:127–134. https://doi.org/10.1016/S0021-9673(01)96357-5

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thanks Nadia Morin-Crini (Université Bourgogne Franche-Comté, France) for his critical reading of early drafts of this chapter and English corrections, and Marc Fourmentin (Université du Littoral-Côte-d’Opale, France) for illustration graphics. For Grégorio Crini, it was a great privilege and honor to write this review with Éva Fenyvesi and Lajos Szente.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grégorio Crini.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crini, G., Fenyvesi, É. & Szente, L. Outstanding contribution of Professor József Szejtli to cyclodextrin applications in foods, cosmetics, drugs, chromatography and biotechnology: a review. Environ Chem Lett 19, 2619–2641 (2021). https://doi.org/10.1007/s10311-020-01170-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10311-020-01170-y

Keywords

Navigation