Skip to main content

Advertisement

Log in

Genomics and Epigenomics of Pituitary Tumors: What Do Pathologists Need to Know?

  • Published:
Endocrine Pathology Aims and scope Submit manuscript

Abstract

Molecular pathology has advanced our understanding of many tumors and offers opportunities to identify novel therapies. In the pituitary, the field has uncovered several genetic mutations that predispose to pituitary neuroendocrine tumor (PitNET) development, including MEN1, CDKN1B, PRKRIα, AIP, GPR101, and other more rare events; however, these genes are only rarely mutated in sporadic PitNETs. Recurrent genetic events in sporadic PitNETs include GNAS mutations in a subset of somatotroph tumors and ubiquitin-specific peptidase mutations (e.g., USP8, USP48) in some corticotroph tumors; to date, neither of these has resulted in altered management, and instead, the prognosis and management of PitNETs still rely more on cell type and subtype as well as local growth that determines surgical resectability. In contrast, craniopharyngiomas have either CTNNB1 or BRAFV600E mutations that correlate with adamantinomatous or papillary morphology, respectively; the latter offers the opportunity for targeted therapy. DICER1 mutations are found in patients with pituitary blastoma. Epigenetic changes are implicated in the pathogenesis of the more common sporadic pituitary neoplasms including the majority of PitNETs and tumors of pituicytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Asa SL, Perry A. Tumors of the Pituitary Gland. Atlas of Tumor nd Nontumor Pathology, Series 5, Fascicle 1. Arlington VA: ARP Press, 2020.

  2. Asa SL, Penz G, Kovacs K, Ezrin C. Prolactin cells in the human pituitary. A quantitative immunocytochemical analysis. Arch Pathol Lab Med 1982; 106:360–363.

  3. Horvath E, Lloyd RV, Kovacs K. Propylthiouracyl-induced hypothyroidism results in reversible transdifferentiation of somatotrophs into thyroidectomy cells. A morphologic study of the rat pituitary including immunoelectron microscopy. Lab Invest 1990; 63:511–520.

  4. Asa SL, Casar-Borota O, Chanson P et al. From pituitary adenoma to pituitary neuroendocrine tumor (PitNET): an International Pituitary Pathology Club proposal. Endocr Relat Cancer 2017; 24(4):C5-C8.

    Article  CAS  PubMed  Google Scholar 

  5. Mete O, Lopes MB, Asa SL. Spindle cell oncocytomas and granular cell tumors of the pituitary are variants of pituicytoma. Am J Surg Pathol 2013; 37(11):1694-1699.

    Article  PubMed  Google Scholar 

  6. Asa SL, Mete O. Hypothalamic Endocrine Tumors: An Update. J Clin Med 2019; 8(10).

  7. Asa SL, Ezzat S. The pathogenesis of pituitary tumors. Annu Rev Pathol 2009; 4:97-126.

    Article  CAS  PubMed  Google Scholar 

  8. Ezzat S, Asa SL. Mechanisms of disease: The pathogenesis of pituitary tumors. Nat Clin Pract Endocrinol Metab 2006; 2(4):220-230.

    Article  CAS  PubMed  Google Scholar 

  9. Gomez-Hernandez K, Ezzat S, Asa SL, Mete O. Clinical Implications of Accurate Subtyping of Pituitary Adenomas: Perspectives from the Treating Physician. Turk Patoloji Derg 2015; 31 Suppl 1:4-17.

    PubMed  Google Scholar 

  10. Ezzat S, Cheng S, Asa SL. Epigenetics of pituitary tumors: Pathogenetic and therapeutic implications. Mol Cell Endocrinol 2018; 469:70-76.

    Article  CAS  PubMed  Google Scholar 

  11. Trouillas J, Labat-Moleur F, Sturm N et al. Pituitary tumors and hyperplasia in multiple endocrine neoplasia type 1 syndrome (MEN1): a case-control study in a series of 77 patients versus 2509 non-MEN1 patients. Am J Surg Pathol 2008; 32(4):534-543.

    Article  PubMed  Google Scholar 

  12. Beckers A, Aaltonen LA, Daly AF, Karhu A. Familial isolated pituitary adenomas (FIPA) and the pituitary adenoma predisposition due to mutations in the aryl hydrocarbon receptor interacting protein (AIP) gene. Endocr Rev 2013; 34(2):239-277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Daly AF, Tichomirowa MA, Petrossians P et al. Clinical characteristics and therapeutic responses in patients with germ-line AIP mutations and pituitary adenomas: an international collaborative study. J Clin Endocrinol Metab 2010; 95(11):E373-E383.

    Article  PubMed  Google Scholar 

  14. Tahir A, Chahal HS, Korbonits M. Molecular genetics of the aip gene in familial pituitary tumorigenesis. Prog Brain Res 2010; 182:229-253.

    Article  CAS  PubMed  Google Scholar 

  15. Georgitsi M, De Menis E, Cannavo S et al. Aryl hydrocarbon receptor interacting protein (AIP) gene mutation analysis in children and adolescents with sporadic pituitary adenomas. Clin Endocrinol (Oxf) 2008; 69(4):621-627.

    Article  CAS  Google Scholar 

  16. 16. Wermer P. Genetic aspects of adenomatosis of endocrine glands. Am J Med 1954; 16:363-371.

    Article  CAS  PubMed  Google Scholar 

  17. Thakker RV. Multiple endocrine neoplasia type 1 (MEN1) and type 4 (MEN4). Mol Cell Endocrinol 2014; 386(1-2):2-15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Brennan P. Breast cancer risk in MEN1 - a cancer genetics perspective. Clin Endocrinol (Oxf) 2015; 82(3):327-229.

    Article  Google Scholar 

  19. DeLellis RA. Multiple endocrine neoplasia syndromes revisited. Clinical, morphologic and molecular features. Lab Invest 1995; 72:494–505.

  20. Ezzat S, Asa SL. The multiple endocrine neoplasia syndromes. In: Kovacs K, Asa SL, editors. Functional Endocrine Pathology. Boston: Blackwell Science, 1998: 952-966.

    Google Scholar 

  21. Scheithauer BW, Laws ER, Jr., Kovacs K, Horvath E, Randall RV, Carney JA. Pituitary adenomas of the multiple endocrine neoplasia type I syndrome. Semin Diagn Pathol 1987; 4(3):205-211.

    CAS  PubMed  Google Scholar 

  22. Mete O, Gomez-Hernandez K, Kucharczyk W et al. Silent subtype 3 pituitary adenomas are not always silent and represent poorly differentiated monomorphous plurihormonal Pit-1 lineage adenomas. Mod Pathol 2016; 29(2):131-142.

    Article  CAS  PubMed  Google Scholar 

  23. Shintani Y, Yoshimoto K, Horie H et al. Two different pituitary adenomas in a patient with multiple endocrine neoplasia type 1 associated with growth hormone-releasing hormone-producing pancreatic tumor: clinical and genetic features. Endocr J 1995; 42:331-340.

    Article  CAS  PubMed  Google Scholar 

  24. Pellegata NS, Quintanilla-Martinez L, Siggelkow H et al. Germ-line mutations in p27Kip1 cause a multiple endocrine neoplasia syndrome in rats and humans. Proc Natl Acad Sci U S A 2006; 103(42):15558-15563.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Georgitsi M, Raitila A, Karhu A et al. Germline CDKN1B/p27Kip1 mutation in multiple endocrine neoplasia. J Clin Endocrinol Metab 2007; 92(8):3321-3325.

    Article  CAS  PubMed  Google Scholar 

  26. Agarwal SK, Mateo CM, Marx SJ. Rare germline mutations in cyclin-dependent kinase inhibitor genes in multiple endocrine neoplasia type 1 and related states. J Clin Endocrinol Metab 2009; 94(5):1826-1834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Georgitsi M. MEN-4 and other multiple endocrine neoplasias due to cyclin-dependent kinase inhibitors (p27(Kip1) and p18(INK4C)) mutations. Best Pract Res Clin Endocrinol Metab 2010; 24(3):425-437.

    Article  CAS  PubMed  Google Scholar 

  28. Alrezk R, Hannah-Shmouni F, Stratakis CA. MEN4 and CDKN1B mutations: the latest of the MEN syndromes. Endocr Relat Cancer 2017; 24(10):T195-T208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nachtigall LB, Guarda FJ, Lines KE et al. Clinical MEN-1 Among a Large Cohort of Patients With Acromegaly. J Clin Endocrinol Metab 2020; 105(6).

  30. Carney JA, Gordon H, Carpenter PC, Shenoy BV, Go VL. The complex of myxomas, spotty pigmentation, and endocrine overactivity. Medicine (Baltimore) 1985; 64(4):270-283.

    Article  CAS  Google Scholar 

  31. Kirschner LS, Carney JA, Pack SD et al. Mutations of the gene encoding the protein kinase A type I-alpha regulatory subunit in patients with the Carney complex. Nat Genet 2000; 26(1):89-92.

    Article  CAS  PubMed  Google Scholar 

  32. Yin Z, Williams-Simons L, Parlow AF, Asa S, Kirschner LS. Pituitary-specific knockout of the Carney complex gene prkar1a leads to pituitary tumorigenesis. Mol Endocrinol 2008; 22(2):380-387.

    Article  CAS  PubMed  Google Scholar 

  33. Soares BS, Frohman LA. Isolated familial somatotropinoma. Pituitary 2004; 7(2):95-101.

    Article  PubMed  Google Scholar 

  34. Beckers A, Daly AF. The clinical, pathological, and genetic features of familial isolated pituitary adenomas. Eur J Endocrinol 2007; 157(4):371-382.

    Article  CAS  PubMed  Google Scholar 

  35. Pesatori AC, Baccarelli A, Consonni D et al. Aryl hydrocarbon receptor-interacting protein and pituitary adenomas: a population-based study on subjects exposed to dioxin after the Seveso, Italy, accident. Eur J Endocrinol 2008; 159(6):699-703.

    Article  CAS  PubMed  Google Scholar 

  36. Stiles CE, Korbonits M. Familial Isolated Pituitary Adenoma. 2000.

  37. Vierimaa O, Georgitsi M, Lehtonen R et al. Pituitary adenoma predisposition caused by germline mutations in the AIP gene. Science 2006; 312(5777):1228-1230.

    Article  CAS  PubMed  Google Scholar 

  38. Gill AJ. Succinate dehydrogenase (SDH)-deficient neoplasia. Histopathology 2018; 72(1):106-116.

    Article  PubMed  Google Scholar 

  39. Xekouki P, Stratakis CA. Succinate dehydrogenase (SDHx) mutations in pituitary tumors: could this be a new role for mitochondrial complex II and/or Krebs cycle defects? Endocr Relat Cancer 2012; 19(6):C33-C40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bengtsson D, Joost P, Aravidis C et al. Corticotroph Pituitary Carcinoma in a Patient With Lynch Syndrome (LS) and Pituitary Tumors in a Nationwide LS Cohort. J Clin Endocrinol Metab 2017; 102(11):3928-3932.

    Article  PubMed  Google Scholar 

  41. Trivellin G, Daly AF, Faucz FR et al. Gigantism and acromegaly due to Xq26 microduplications and GPR101 mutation. N Engl J Med 2014; 371(25):2363-2374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Moran A, Asa SL, Kovacs K et al. Gigantism due to pituitary mammosomatotroph hyperplasia. N Engl J Med 1990; 323:322-327.

    Article  CAS  PubMed  Google Scholar 

  43. Scheithauer BW, Kovacs K, Horvath E et al. Pituitary blastoma. Acta Neuropathol 2008; 116(6):657-666.

    Article  PubMed  Google Scholar 

  44. de Kock L, Sabbaghian N, Plourde F et al. Pituitary blastoma: a pathognomonic feature of germ-line DICER1 mutations. Acta Neuropathol 2014; 128(1):111-122.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Sahakitrungruang T, Srichomthong C, Pornkunwilai S et al. Germline and somatic DICER1 mutations in a pituitary blastoma causing infantile-onset Cushing's disease. J Clin Endocrinol Metab 2014; 99(8):E1487-E1492.

    Article  CAS  PubMed  Google Scholar 

  46. Neou M, Villa C, Armignacco R et al. Pangenomic Classification of Pituitary Neuroendocrine Tumors. Cancer Cell 2020; 37(1):123-134.

    Article  CAS  PubMed  Google Scholar 

  47. Spada A, Arosio M, Bochicchio D et al. Clinical, biochemical and morphological correlates in patients bearing growth hormone-secreting pituitary tumors with or without constitutively active adenylyl cyclase. J Clin Endocrinol Metab 1990; 71:1421-1426.

    Article  CAS  PubMed  Google Scholar 

  48. Asa SL, Kucharczyk W, Ezzat S. Pituitary acromegaly: not one disease. Endocr Relat Cancer 2017; 24(3):C1-C4.

    Article  PubMed  Google Scholar 

  49. Bakhtiar Y, Hirano H, Arita K et al. Relationship between cytokeratin staining patterns and clinico-pathological features in somatotropinomae. Eur J Endocrinol 2010; 163(4):531-539.

    Article  CAS  PubMed  Google Scholar 

  50. Larkin S, Reddy R, Karavitaki N, Cudlip S, Wass J, Ansorge O. Granulation pattern, but not GSP or GHR mutation, is associated with clinical characteristics in somatostatin-naive patients with somatotroph adenomas. Eur J Endocrinol 2013; 168(4):491-499.

    Article  CAS  PubMed  Google Scholar 

  51. Ezzat S, Caspar-Bell GM, Chik CL et al. Predictive markers for postsurgical medical management of acromegaly: a systematic review and consensus treatment guideline. Endocr Pract 2019; 25(4):379-393.

    Article  PubMed  Google Scholar 

  52. Ballare E, Persani L, Lania AG et al. Mutation of somatostatin receptor type 5 in an acromegalic patient resistant to somatostatin analog treatment. J Clin Endocrinol Metab 2001; 86(8):3809-3814.

    Article  CAS  PubMed  Google Scholar 

  53. Asa SL, Coschigano KT, Bellush L, Kopchick JJ, Ezzat S. Evidence for growth hormone (GH) autoregulation in pituitary somatotrophs in GH antagonist-transgenic mice and GH receptor-deficient mice. Am J Pathol 2000; 156(3):1009-1015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Asa SL, DiGiovanni R, Jiang J et al. A growth hormone receptor mutation impairs growth hormone autofeedback signaling in pituitary tumors. Cancer Res 2007; 67(15):7505-7511.

    Article  CAS  PubMed  Google Scholar 

  55. Cuny T, Zeiller C, Bidlingmaier M et al. In vitro impact of pegvisomant on growth hormone-secreting pituitary adenoma cells. Endocr Relat Cancer 2016; 23(7):509-519.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhou C, Jiao Y, Wang R, Ren SG, Wawrowsky K, Melmed S. STAT3 upregulation in pituitary somatotroph adenomas induces growth hormone hypersecretion. J Clin Invest 2015; 125(4):1692-1702.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Fiorentini C, Guerra N, Facchetti M et al. Nerve growth factor regulates dopamine D(2) receptor expression in prolactinoma cell lines via p75(NGFR)-mediated activation of nuclear factor-kappaB. Mol Endocrinol 2002; 16(2):353-366.

    CAS  PubMed  Google Scholar 

  58. De Sousa SMC, Wang PPS, Santoreneos S et al. The Genomic Landscape of Sporadic Prolactinomas. Endocr Pathol 2019; 30(4):318-328.

    Article  PubMed  Google Scholar 

  59. Kara M, Tokat F, Pamir MN, Danyeli AE. Frequency and Role of CDKN2A Deletion in High-Risk Pituitary Neuroendocrine Tumors. Endocr Pathol 2020; 31(2):166-173.

    Article  CAS  PubMed  Google Scholar 

  60. Gittoes NJL, McCabe CJ, Verhaeg J, Sheppard MC, Franklyn JA. Thyroid hormone and estrogen receptor expression in normal pituitary and nonfunctioning tumors of the anterior pituitary. J Clin Endocrinol Metab 1997; 82:1960-1967.

    CAS  PubMed  Google Scholar 

  61. Ando S, Sarlis NJ, Krishnan J et al. Aberrant alternative splicing of thyroid hormone receptor in a TSH- secreting pituitary tumor is a mechanism for hormone resistance. Mol Endocrinol 2001; 15(9):1529-1538.

    Article  CAS  PubMed  Google Scholar 

  62. McCabe CJ, Gittoes NJ, Sheppard MC, Franklyn JA. Thyroid receptor alpha1 and alpha2 mutations in nonfunctioning pituitary tumors. J Clin Endocrinol Metab 1999; 84(2):649-653.

    CAS  PubMed  Google Scholar 

  63. Sesta A, Cassarino MF, Terreni M et al. Ubiquitin-Specific Protease 8 Mutant Corticotrope Adenomas Present Unique Secretory and Molecular Features and Shed Light on the Role of Ubiquitylation on ACTH Processing. Neuroendocrinology 2020; 110(1-2):119-129.

    Article  CAS  PubMed  Google Scholar 

  64. Ballmann C, Thiel A, Korah HE et al. USP8 Mutations in Pituitary Cushing Adenomas-Targeted Analysis by Next-Generation Sequencing. J Endocr Soc 2018; 2(3):266-278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Reincke M, Sbiera S, Hayakawa A et al. Mutations in the deubiquitinase gene USP8 cause Cushing's disease. Nat Genet 2015; 47(1):31-38.

    Article  CAS  PubMed  Google Scholar 

  66. Hayashi K, Inoshita N, Kawaguchi K et al. The USP8 mutational status may predict drug susceptibility in corticotroph adenomas of Cushing's disease. Eur J Endocrinol 2015.

  67. Ma ZY, Song ZJ, Chen JH et al. Recurrent gain-of-function USP8 mutations in Cushing's disease. Cell Res 2015; 25(3):306-317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Cohen M, Persky R, Stegemann R et al. Germline USP8 Mutation Associated With Pediatric Cushing Disease and Other Clinical Features: A New Syndrome. J Clin Endocrinol Metab 2019; 104(10):4676-4682.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Chen J, Jian X, Deng S et al. Identification of recurrent USP48 and BRAF mutations in Cushing's disease. Nat Commun 2018; 9(1):3171.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Casar-Borota O, Boldt HB, Engstrom BE et al. Corticotroph aggressive pituitary tumours and carcinomas frequently harbour ATRX mutations. J Clin Endocrinol Metab 2020.

  71. Guo F, Wang G, Wang F, Xu D, Liu X. Identification of Novel Genes Involved in the Pathogenesis of an ACTH-Secreting Pituitary Carcinoma: A Case Report and Literature Review. Front Oncol 2018; 8:510.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Karl M, Lamberts SWJ, Koper JW et al. Cushing's disease preceded by generalized glucocorticoid resistance: clinical consequences of a novel dominant-negative glucocorticoid receptor mutation. Proc Assoc Am Physicians 1996; 108:296-307.

    CAS  PubMed  Google Scholar 

  73. Karl M, von Wichert G, Kempter E et al. Nelson's syndrome associated with a somatic frame shift mutation in the glucocorticoid receptor gene. J Clin Endocrinol Metab 1996; 81:124-129.

    CAS  PubMed  Google Scholar 

  74. Newey PJ, Nesbit MA, Rimmer AJ et al. Whole-exome sequencing studies of nonfunctioning pituitary adenomas. J Clin Endocrinol Metab 2013; 98(4):E796-E800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Bi WL, Horowitz P, Greenwald NF et al. Landscape of Genomic Alterations in Pituitary Adenomas. Clin Cancer Res 2017; 23(7):1841-1851.

    Article  CAS  PubMed  Google Scholar 

  76. Hage M, Viengchareun S, Brunet E et al. Genomic Alterations and Complex Subclonal Architecture in Sporadic GH-Secreting Pituitary Adenomas. J Clin Endocrinol Metab 2018; 103(5):1929-1939.

    Article  PubMed  Google Scholar 

  77. Karga HJ, Alexander JM, Hedley-Whyte ET, Klibanski A, Jameson JL. Ras mutations in human pituitary tumors. J Clin Endocrinol Metab 1992; 74:914-919.

    Article  CAS  PubMed  Google Scholar 

  78. Cai WY, Alexander JM, Hedley-Whyte ET et al. Ras mutations in human prolactinomas and pituitary carcinomas. J Clin Endocrinol Metab 1994; 78:89-93.

    CAS  PubMed  Google Scholar 

  79. Hinton DR, Hahn JA, Weiss MH, Couldwell WT. Loss of Rb expression in an ACTH-secreting pituitary carcinoma. Cancer Lett 1998; 126(2):209-214.

    Article  CAS  PubMed  Google Scholar 

  80. Thapar K, Scheithauer BW, Kovacs K, Pernicone PJ, Laws ER, Jr. p53 expression in pituitary adenomas and carcinomas: Correlation with invasiveness and tumor growth fractions. Neurosurgery 1996; 38:765-771.

    Article  CAS  PubMed  Google Scholar 

  81. Pernicone PJ, Scheithauer B, Sebo TJ et al. Pituitary carcinoma:A clinicopathologic study of 15 cases. Cancer 1997; 79:804-812.

    Article  CAS  PubMed  Google Scholar 

  82. DeLellis RA, Lloyd RV, Heitz PU, Eng C. Pathology and Genetics of Tumours of Endocrine Organs. Lyons, France: IARC Press, 2004.

    Google Scholar 

  83. Tanizaki Y, Jin L, Scheithauer BW, Kovacs K, Roncaroli F, Lloyd RV. P53 gene mutations in pituitary carcinomas. Endocr Pathol 2007; 18(4):217-222.

    Article  CAS  PubMed  Google Scholar 

  84. Buckley N, Bates AS, Broome JC et al. p53 protein accumulation in Cushings adenomas and invasive non-functional adenomas. J Clin Endocrinol Metab 1994; 79:1513-1516.

    CAS  PubMed  Google Scholar 

  85. Sumi T, Stefaneanu L, Kovacs K, Asa SL, Rindi G. Immunohistochemical study of p53 protein in human and animal pituitary tumors. Endocr Pathol 1993; 4:95-99.

    Article  PubMed  Google Scholar 

  86. Levy A, Hall L, Yeundall WA, Lightman SL. p53 gene mutations in pituitary adenomas: rare events. Clin Endocrinol (Oxf) 1994; 41:809-814.

    Article  CAS  Google Scholar 

  87. Kawashima ST, Usui T, Sano T et al. P53 gene mutation in an atypical corticotroph adenoma with Cushing's disease. Clin Endocrinol (Oxf) 2009; 70(4):656-657.

    Article  Google Scholar 

  88. Amar AP, Hinton DR, Krieger MD, Weiss MH. Invasive pituitary adenomas: significance of proliferation parameters. Pituitary 1999; 2(2):117-122.

    Article  CAS  PubMed  Google Scholar 

  89. Goschzik T, Gessi M, Dreschmann V et al. Genomic Alterations of Adamantinomatous and Papillary Craniopharyngioma. J Neuropathol Exp Neurol 2017; 76(2):126-134.

    CAS  PubMed  Google Scholar 

  90. Sekine S, Shibata T, Kokubu A et al. Craniopharyngiomas of adamantinomatous type harbor beta-catenin gene mutations. Am J Pathol 2002; 161(6):1997-2001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Buslei R, Nolde M, Hofmann B et al. Common mutations of beta-catenin in adamantinomatous craniopharyngiomas but not in other tumours originating from the sellar region. Acta Neuropathol 2005; 109(6):589-597.

    Article  CAS  PubMed  Google Scholar 

  92. Oikonomou E, Barreto DC, Soares B, De Marco L, Buchfelder M, Adams EF. Beta-catenin mutations in craniopharyngiomas and pituitary adenomas. J Neurooncol 2005; 73(3):205-209.

    Article  CAS  PubMed  Google Scholar 

  93. Brastianos PK, Taylor-Weiner A, Manley PE et al. Exome sequencing identifies BRAF mutations in papillary craniopharyngiomas. Nat Genet 2014; 46(2):161-165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Fukuhara N, Iwata T, Inoshita N et al. Immunohistochemistry or Molecular Analysis: Which Method Is Better for Subtyping Craniopharyngioma? Endocr Pathol 2020.

  95. Brastianos PK, Shankar GM, Gill CM et al. Dramatic Response of BRAF V600E Mutant Papillary Craniopharyngioma to Targeted Therapy. J Natl Cancer Inst 2016; 108(2).

  96. Roque A, Odia Y. BRAF-V600E mutant papillary craniopharyngioma dramatically responds to combination BRAF and MEK inhibitors. CNS Oncol 2017; 6(2):95-99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Rostami E, Witt NP, Libard S, Wikstrom J, Casar-Borota O, Gudjonsson O. Recurrent papillary craniopharyngioma with BRAFV600E mutation treated with neoadjuvant-targeted therapy. Acta Neurochir (Wien ) 2017; 159(11):2217-2221.

    Article  Google Scholar 

  98. Viaene AN, Lee EB, Rosenbaum JN, Nasrallah IM, Nasrallah MP. Histologic, immunohistochemical, and molecular features of pituicytomas and atypical pituicytomas. Acta Neuropathol Commun 2019; 7(1):69.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Phillips JJ, Misra A, Feuerstein BG, Kunwar S, Tihan T. Pituicytoma: characterization of a unique neoplasm by histology, immunohistochemistry, ultrastructure, and array-based comparative genomic hybridization. Arch Pathol Lab Med 2010; 134(7):1063-1069.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Miller MB, Bi WL, Ramkissoon LA et al. MAPK activation and HRAS mutation identified in pituitary spindle cell oncocytoma. Oncotarget 2016; 7(24):37054-37063.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Ezzat S, Walpola IA, Ramyar L, Smyth HS, Asa SL. Membrane-anchored expression of transforming growth factor-a in human pituitary adenoma cells. J Clin Endocrinol Metab 1995; 80:534-539.

    CAS  PubMed  Google Scholar 

  102. Liu SC, Sanfilippo B, Perroteau I, Derynck R, Salomon DS, Kidwell WR. Expression of transforming growth factor a (TGFa) in differentiated rat mammary tumors: estrogen induction of TGFa production. Mol Endocrinol 1987; 1:683-692.

    Article  CAS  PubMed  Google Scholar 

  103. McAndrew J, Paterson AJ, Asa SL, McCarthy KJ, Kudlow JE. Targeting of transforming growth factor-a expression to pituitary lactotrophs in transgenic mice results in selective lactotroph proliferation and adenomas. Endocrinology 1995; 136:4479-4488.

    Article  CAS  PubMed  Google Scholar 

  104. Roh M, Paterson AJ, Asa SL, Chin E, Kudlow JE. Stage-sensitive blockade of pituitary somatomammotrope development by targeted expression of a dominant negative epidermal growth factor receptor in transgenic mice. Mol Endocrinol 2001; 15(4):600-613.

    Article  CAS  PubMed  Google Scholar 

  105. LeRiche V, Asa SL, Ezzat S. Epidermal growth factor and its receptor (EGF-R) in human pituitary adenomas: EGF-R correlates with tumor aggressiveness. J Clin Endocrinol Metab 1996; 81:656-662.

    CAS  PubMed  Google Scholar 

  106. Cooper O, Vlotides G, Fukuoka H, Greene MI, Melmed S. Expression and function of ErbB receptors and ligands in the pituitary. Endocr Relat Cancer 2011; 18(6):R197-R211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Liu X, Kano M, Araki T et al. ErbB receptor-driven prolactinomas respond to targeted lapatinib treatment in female transgenic mice. Endocrinology 2015; 156(1):71-79.

    Article  PubMed  Google Scholar 

  108. Gospodarowicz D, Ferrara N, Schweigerer L, Neufeld G. Structural characterization and biological functions of fibroblast growth factor. Endocr Rev 1987; 8:95-114.

    Article  CAS  PubMed  Google Scholar 

  109. Ferrara N, Schweigerer L, Neufeld G, Mitchell R, Gospodarowicz D. Pituitary follicular cells produce basic fibroblast growth factor. Proc Natl Acad Sci USA 1987; 84:5773-5777.

    Article  CAS  PubMed  Google Scholar 

  110. Scully KM, Rosenfeld MG. Pituitary development: regulatory codes in mammalian organogenesis. Science 2002; 295(5563):2231-2235.

    Article  CAS  PubMed  Google Scholar 

  111. Itoh N, Ornitz DM. Evolution of the Fgf and Fgfr gene families. Trends Genet 2004; 20(11):563-569.

    Article  CAS  PubMed  Google Scholar 

  112. De Moerlooze L, Spencer-Dene B, Revest J, Hajihosseini M, Rosewell I, Dickson C. An important role for the IIIb isoform of fibroblast growth factor receptor 2 (FGFR2) in mesenchymal-epithelial signalling during mouse organogenesis. Develop 2000; 127(3):483-492.

    Article  Google Scholar 

  113. Celli G, LaRochelle WJ, Mackem S, Sharp R, Merlino G. Soluble dominant-negative receptor uncovers essential roles for fibroblast growth factors in multi-organ induction and patterning. EMBO J 1998; 17(6):1642-1655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Ezzat S, Smyth HS, Ramyar L, Asa SL. Heterogeneous in vivo and in vitro expression of basic fibroblast growth factor by human pituitary adenomas. J Clin Endocrinol Metab 1995; 80:878-884.

    CAS  PubMed  Google Scholar 

  115. Li Y, Koga M, Kasayama S et al. Identification and characterization of high molecular weight forms of basic fibroblast growth factor in human pituitary adenomas. J Clin Endocrinol Metab 1992; 75:1436-1441.

    CAS  PubMed  Google Scholar 

  116. Heaney AP, Horwitz GA, Wang Z, Singson R, Melmed S. Early involvement of estrogen-induced pituitary tumor transforming gene and fibroblast growth factor expression in prolactinoma pathogenesis. Nature Medicine 1999; 5:1317-1321.

    Article  CAS  PubMed  Google Scholar 

  117. Zimering MB, Katsumata N, Sato Y et al. Circulating basic FGF-1 like substance in multiple endocrine neoplasia type 1 and acromegaly. Fibroblast Growth Factor Family Meeting,San Diego,CA , 40. 1991 (Abstract)

  118. Correa FA, Trarbach EB, Tusset C et al. FGFR1 and PROKR2 rare variants found in patients with combined pituitary hormone deficiencies. Endocr Connect 2015; 4(2):100-107.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Abbass SAA, Asa SL, Ezzat S. Altered expression of fibroblast growth factor receptors in human pituitary adenomas. J Clin Endocrinol Metab 1997; 82:1160-1166.

    Article  CAS  PubMed  Google Scholar 

  120. Zhu X, Lee K, Asa SL, Ezzat S. Epigenetic silencing through DNA and histone methylation of fibroblast growth factor receptor 2 in neoplastic pituitary cells. Am J Pathol 2007; 170(5):1618-1628.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Zhu X, Asa SL, Ezzat S. Fibroblast Growth Factor 2 and Estrogen Control the Balance of Histone 3 Modifications Targeting MAGE-A3 in Pituitary Neoplasia. Clin Cancer Res 2008; 14(7):1984-1996.

    Article  CAS  PubMed  Google Scholar 

  122. Yu S, Asa SL, Weigel RJ, Ezzat S. Pituitary tumor AP-2alpha recognizes a cryptic promoter in intron 4 of fibroblast growth factor receptor 4. J Biol Chem 2003; 278(22):19597-19602.

    Article  CAS  PubMed  Google Scholar 

  123. Ezzat S, Yu S, Asa SL. Ikaros isoforms in human pituitary tumors: distinct localization, histone acetylation, and activation of the 5' fibroblast growth factor receptor-4 promoter. Am J Pathol 2003; 163(3):1177-1184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Ezzat S, Zheng L, Asa SL. Pituitary tumor-derived fibroblast growth factor receptor 4 isoform disrupts neural cell-adhesion molecule/N-cadherin signaling to diminish cell adhesiveness: a mechanism underlying pituitary neoplasia. Mol Endocrinol 2004; 18(10):2543-2552.

    Article  CAS  PubMed  Google Scholar 

  125. Ezzat S, Zheng L, Winer D, Asa SL. Targeting N-Cadherin through Fibroblast Growth Factor Receptor-4: Distinct Pathogenetic and Therapeutic Implications. Mol Endocrinol 2006; 20(11):2965-2975.

    Article  CAS  PubMed  Google Scholar 

  126. Qian ZR, Sano T, Asa SL et al. Cytoplasmic expression of fibroblast growth factor receptor-4 in human pituitary adenomas: relation to tumor type, size, proliferation, and invasiveness. J Clin Endocrinol Metab 2004; 89(4):1904-1911.

    Article  CAS  PubMed  Google Scholar 

  127. Morita K, Takano K, Yasufuku-Takano J et al. Expression of pituitary tumour-derived, N-terminally truncated isoform of fibroblast growth factor receptor 4 (ptd-FGFR4) correlates with tumour invasiveness but not with G-protein alpha subunit (gsp) mutation in human GH-secreting pituitary adenomas. Clin Endocrinol (Oxf) 2008; 68(3):435-441.

    Article  CAS  Google Scholar 

  128. Mete O, Cintosun A, Pressman I, Asa SL. Epidemiology and biomarker profile of pituitary adenohypophysial tumors. Mod Pathol 2018; 31(6):900-909.

    Article  CAS  PubMed  Google Scholar 

  129. Daniel L, Trouillas J, Renaud W et al. Polysialylated-neural cell adhesion molecule expression in rat pituitary transplantable tumors (spontaneous mammotropic transplantable tumor in Wistar-Furth rats) is related to growth rate and malignancy. Cancer Res 2000; 60(1):80-85.

    CAS  PubMed  Google Scholar 

  130. Nakano-Tateno T, Tateno T, Hlaing MM et al. FGFR4 polymorphic variants modulate phenotypic features of Cushing disease. Mol Endocrinol 2014; 28(4):525-533.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Tateno T, Asa SL, Zheng L, Mayr T, Ullrich A, Ezzat S. The FGFR4-G388R Polymorphism Promotes Mitochondrial STAT3 Serine Phosphorylation to Facilitate Pituitary Growth Hormone Cell Tumorigenesis. PLoS Genet 2011; 7(12):e1002400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Ezzat S, Wang R, Pintilie M, Asa SL. FGFR4 polymorphic alleles modulate mitochondrial respiration: A novel target for somatostatin analog action in pituitary tumors. Oncotarget 2017; 8(2):3481-3494.

    Article  PubMed  Google Scholar 

  133. Altas M, Bayrak OF, Ayan E et al. The effect of polymorphisms in the promoter region of the MMP-1 gene on the occurrence and invasiveness of hypophyseal adenoma. Acta Neurochir (Wien ) 2010; 152(9):1611-1617.

    Article  Google Scholar 

  134. Jacks T, Fazeli A, Schmitt EM, Bronson RT, Goodell MA, Weinberg RA. Effects of an Rb mutation in the mouse. Nature 1992; 359:295-300.

    Article  CAS  PubMed  Google Scholar 

  135. Cryns VL, Alexander JM, Klibanski A, Arnold A. The retinoblastoma gene in human pituitary tumors. J Clin Endocrinol Metab 1993; 77:644-646.

    CAS  PubMed  Google Scholar 

  136. Woloschak M, Yu A, Xiao J, Post KD. Abundance and state of phosphorylation of the retinoblastoma gene product in human pituitary tumors. Int J Cancer 1996; 67(1):16-19.

    Article  CAS  PubMed  Google Scholar 

  137. Pei L, Melmed S, Scheithauer B, Kovacs K, Benedict WF, Prager D. Frequent loss of heterozygosity at the retinoblastoma susceptibility gene (RB) locus in aggressive pituitary tumors: Evidence for a chromosome 13 tumor suppressor gene other than RB. Cancer Res 1995; 55:1613-1616.

    CAS  PubMed  Google Scholar 

  138. Bates AS, Farrell WE, Bicknell EJ et al. Allelic deletion in pituitary adenomas reflects aggressive biological activity and has potential value as a prognostic marker. J Clin Endocrinol Metab 1997; 82:818-824.

    CAS  PubMed  Google Scholar 

  139. Tsai KY, MacPherson D, Rubinson DA et al. ARF mutation accelerates pituitary tumor development in Rb+/- mice. Proc Natl Acad Sci U S A 2002; 99(26):16865-16870.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Lasorella A, Rothschild G, Yokota Y, Russell RG, Iavarone A. Id2 mediates tumor initiation, proliferation, and angiogenesis in Rb mutant mice. Mol Cell Biol 2005; 25(9):3563-3574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Sherr CJ, Roberts JM. Inhibitors of mammalian G1 cyclin-dependent kinases. Genes Dev 1995; 9:1149-1163.

    Article  CAS  PubMed  Google Scholar 

  142. Nakayama K, Ishida N, Shirane M et al. Mice lacking p27Kip1 display increased body size,multiple organ hyperplasia, retinal dysplasia, and pituitary tumors. Cell 1996; 85:707-720.

    Article  CAS  PubMed  Google Scholar 

  143. Kiyokawa H, Kineman RD, Manova-Todorova KO et al. Enhanced growth of mice lacking the cyclin-dependent kinase inhibitor function of p27Kip1. Cell 1996; 85:721-732.

    Article  CAS  PubMed  Google Scholar 

  144. Fero ML, Rivkin M, Tasch M et al. A syndrome of multiorgan hyperplasia with features of gigantism, tumorigenesis, and female sterility in p27Kip1-deficient mice. Cell 1996; 85:733-744.

    Article  CAS  PubMed  Google Scholar 

  145. Franklin DS, Godfrey VL, Lee H et al. CDK inhibitors p18(INK4c) and p27(Kip1) mediate two separate pathways to collaboratively suppress pituitary tumorigenesis. Genes Dev 1998; 12(18):2899-2911.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Bamberger CM, Fehn M, Bamberger AM et al. Reduced expression levels of the cell-cycle inhibitor p27Kip1 in human pituitary adenomas. Eur J Endocrinol 1999; 140(3):250-255.

    Article  CAS  PubMed  Google Scholar 

  147. Dahia PL, Aguiar RC, Honegger J et al. Mutation and expression analysis of the p27/kip1 gene in corticotrophin- secreting tumours. Oncogene 1998; 16(1):69-76.

    Article  CAS  PubMed  Google Scholar 

  148. Liu W, Asa SL, Ezzat S. Vitamin D and its analog EB1089 induce p27 accumulation and diminish association of p27 with Skp2 independent of PTEN in pituitary corticotroph cells. Brain Pathol 2002; 12(4):412-419.

    Article  CAS  PubMed  Google Scholar 

  149. Woloschak M, Yu A, Post KD. Frequent inactivation of the p16 gene in human pituitary tumors by gene methylation. Mol Carcinog 1997; 19(4):221-224.

    Article  CAS  PubMed  Google Scholar 

  150. Frost SJ, Simpson DJ, Clayton RN, Farrell WE. Transfection of an inducible p16/CDKN2A construct mediates reversible growth inhibition and G1 arrest in the AtT20 pituitary tumor cell line. Mol Endocrinol 1999; 13(11):1801-1810.

    Article  CAS  PubMed  Google Scholar 

  151. Zhang X, Sun H, Danila DC et al. Loss of expression of GADD45 gamma, a growth inhibitory gene, in human pituitary adenomas: implications for tumorigenesis. J Clin Endocrinol Metab 2002; 87(3):1262-1267.

    CAS  PubMed  Google Scholar 

  152. Bahar A, Bicknell JE, Simpson DJ, Clayton RN, Farrell WE. Loss of expression of the growth inhibitory gene GADD45gamma, in human pituitary adenomas, is associated with CpG island methylation. Oncogene 2004; 23(4):936-944.

    Article  CAS  PubMed  Google Scholar 

  153. Zhao J, Dahle D, Zhou Y, Zhang X, Klibanski A. Hypermethylation of the promoter region is associated with the loss of MEG3 gene expression in human pituitary tumors. J Clin Endocrinol Metab 2005; 90(4):2179-2186.

    Article  CAS  PubMed  Google Scholar 

  154. Metin-Armagan D, Comunoglu N, Bulut G et al. A Novel Expression Profile of Cell Cycle and DNA Repair Proteins in Nonfunctioning Pituitary Adenomas. Endocr Pathol 2020; 31(1):2-13.

    Article  CAS  PubMed  Google Scholar 

  155. Bahar A, Simpson DJ, Cutty SJ et al. Isolation and characterization of a novel pituitary tumor apoptosis gene. Mol Endocrinol 2004; 18(7):1827-1839.

    Article  CAS  PubMed  Google Scholar 

  156. Zhu X, Mao X, Hurren R, Schimmer AD, Ezzat S, Asa SL. Deoxyribonucleic acid methyltransferase 3B promotes epigenetic silencing through histone 3 chromatin modifications in pituitary cells. J Clin Endocrinol Metab 2008; 93(9):3610-3617.

    Article  CAS  PubMed  Google Scholar 

  157. Georgopoulos K, Winandy S, Avitahl N. The role of the Ikaros gene in lymphocyte development and homeostasis. Annu Rev Immunol 1997; 15:155-176.

    Article  CAS  PubMed  Google Scholar 

  158. Ezzat S, Mader R, Yu S, Ning T, Poussier P, Asa SL. Ikaros integrates endocrine and immune system development. J Clin Invest 2005; 115(4):1021-1029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Ezzat S, Mader R, Fischer S, Yu S, Ackerley C, Asa SL. An essential role for the hematopoietic transcription factor Ikaros in hypothalamic-pituitary-mediated somatic growth. Proc Natl Acad Sci U S A 2006; 103(7):2214-2219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Ezzat S, Yu S, Asa SL. The zinc finger Ikaros transcription factor regulates pituitary growth hormone and prolactin gene expression through distinct effects on chromatin accessibility. Mol Endocrinol 2005; 19(4):1004-1011.

    Article  CAS  PubMed  Google Scholar 

  161. Ezzat S, Zhu X, Loeper S, Fischer S, Asa SL. Tumor-derived Ikaros 6 acetylates the Bcl-XL promoter to up-regulate a survival signal in pituitary cells. Mol Endocrinol 2006; 20(11):2976-2986.

    Article  CAS  PubMed  Google Scholar 

  162. Loeper S, Asa SL, Ezzat S. Ikaros modulates cholesterol uptake: A link between tumor suppression and differentiation. Cancer Res 2008; 68(10):3715-3723.

    Article  CAS  PubMed  Google Scholar 

  163. Fedele M, Battista S, Kenyon L et al. Overexpression of the HMGA2 gene in transgenic mice leads to the onset of pituitary adenomas. Oncogene 2002; 21(20):3190-3198.

    Article  CAS  PubMed  Google Scholar 

  164. Fedele M, Pentimalli F, Baldassarre G et al. Transgenic mice overexpressing the wild-type form of the HMGA1 gene develop mixed growth hormone/prolactin cell pituitary adenomas and natural killer cell lymphomas. Oncogene 2005; 24(21):3427-3435.

    Article  CAS  PubMed  Google Scholar 

  165. Fedele M, Visone R, De M, I et al. HMGA2 induces pituitary tumorigenesis by enhancing E2F1 activity. Cancer Cell 2006; 9(6):459–471.

  166. De Martino I, Visone R, Wierinckx A et al. HMGA proteins up-regulate CCNB2 gene in mouse and human pituitary adenomas. Cancer Res 2009; 69(5):1844-1850.

    Article  PubMed  Google Scholar 

  167. Evans CO, Moreno CS, Zhan X et al. Molecular pathogenesis of human prolactinomas identified by gene expression profiling, RT-qPCR, and proteomic analyses. Pituitary 2008; 11(3):231-245.

    Article  CAS  PubMed  Google Scholar 

  168. Finelli P, Pierantoni GM, Giardino D et al. The High Mobility Group A2 gene is amplified and overexpressed in human prolactinomas. Cancer Res 2002; 62(8):2398-2405.

    CAS  PubMed  Google Scholar 

  169. Qian ZR, Asa SL, Siomi H et al. Overexpression of HMGA2 relates to reduction of the let-7 and its relationship to clinicopathological features in pituitary adenomas. Mod Pathol 2009; 22(3):431-441.

    Article  CAS  PubMed  Google Scholar 

  170. Mete O, Ezzat S, Asa SL. Biomarkers of aggressive pituitary adenomas. J Mol Endocrinol 2012; 49(2):R69-R78.

    Article  CAS  PubMed  Google Scholar 

  171. Tamura R, Ohara K, Morimoto Y et al. PITX2 Expression in Non-functional Pituitary Neuroendocrine Tumor with Cavernous Sinus Invasion. Endocr Pathol 2019; 30(2):81-89.

    Article  CAS  PubMed  Google Scholar 

  172. Mete O, Hayhurst C, Alahmadi H et al. The role of mediators of cell invasiveness, motility, and migration in the pathogenesis of silent corticotroph adenomas. Endocr Pathol 2013; 24(4):191-198.

    Article  PubMed  Google Scholar 

  173. Krokker L, Nyiro G, Reiniger L et al. Differentially Expressed miRNAs Influence Metabolic Processes in Pituitary Oncocytoma. Neurochem Res 2019; 44(10):2360-2371.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvia L. Asa.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asa, S.L., Mete, O. & Ezzat, S. Genomics and Epigenomics of Pituitary Tumors: What Do Pathologists Need to Know?. Endocr Pathol 32, 3–16 (2021). https://doi.org/10.1007/s12022-021-09663-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12022-021-09663-4

Keywords

Navigation