Skip to main content

Advertisement

Log in

Genomics of High-Grade Neuroendocrine Neoplasms: Well-Differentiated Neuroendocrine Tumor with High-Grade Features (G3 NET) and Neuroendocrine Carcinomas (NEC) of Various Anatomic Sites

  • Published:
Endocrine Pathology Aims and scope Submit manuscript

Abstract

High-grade neuroendocrine neoplasms (HG-NENs) are clinically aggressive diseases, the classification of which has recently been redefined. They now include both poorly differentiated NENs (neuroendocrine carcinoma, NECs) and high proliferating well-differentiated NENs (called grade 3 neuroendocrine tumors, G3 NETs, in the digestive system). In the last decade, the “molecular revolution” that has affected all fields of medical oncology has also shed light in the understanding of HG NENs heterogeneity and has provided new diagnostic and therapeutic tools, useful in the management of these malignancies. Considering the kaleidoscopic aspects of HG NENs in various anatomical sites, this review systematically addresses the genomic landscape of such neoplasm throughout the more common thoracic and digestive locations, as well as it will consider other rare but not exceptional primary sites, including the skin, the head and neck, and the urogenital system. The revision of the available literature will then be oriented to understand the translational relevance of molecular data, by analyzing conceptual issues, clinicopathological correlations, and unmet needs in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. La Rosa S, Uccella S (2020) Classification of neuroendocrine neoplasms: lights and shadows. Rev Endocr Metab Disord doi: https://doi.org/10.1007/s11154-020-09612-2. Epub ahead of print. PMID: 33169199.

  2. Klimstra DS, Klöppel G, La Rosa S, Rindi G (2019) Classification of neuroendocrine neoplasms of the digestive system. In: WHO Classification of Tumours Editorial Board editors. Digestive system tumours, 5th edn, vol 1. Lyon, IARC, pp. 16–19

  3. Marchiò C, Gatti G, Massa F, Bertero L, Filosso P, Pelosi G, Cassoni P, Volante M, Papotti M (2017) Distinctive pathological and clinical features of lung carcinoids with high proliferation index Virchows Arch 471:713-720

    Article  PubMed  PubMed Central  Google Scholar 

  4. Rekhtman N, Desmeules P, Litvak AM, et al (2019) Stage IV lung carcinoids: spectrum and evolution of proliferation rate, focusing on variants with elevated proliferation indices. Mod Pathol 32:1106-1122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Fabbri A, Cossa M, Sonzogni A, Bidoli P, Canova S, Cortinovis D, Abbate MI, Calabrese F, Nannini N, Lunardi F, Rossi G, La Rosa S, Capella C, Tamborini E, Perrone F, Busico A, Capone I, Valeri B, Pastorino U, Albini A, Pelosi G (2017) Thymus neuroendocrine tumors with CTNNB1 gene mutations, disarrayed ss-catenin expression, and dual intra-tumor Ki-67 labeling index compartmentalization challenge the concept of secondary high-grade neuroendocrine tumor: a paradigm shift. Virchows Arch 471:31-47

    Article  CAS  PubMed  Google Scholar 

  6. Travis W, Brambilla E, Burke A, Marx A, Nicholson A (2015) WHO Classification of Tumours of the Lung, Pleura, Thymus and Heart. IARC Press, Lyon

    Google Scholar 

  7. Narayanan D, Mandal R, Hardin H, Chanana V, Schwalbe M, Rosenbaum J, Buehler D, Lloyd RV (2020) Long non-coding RNAs in pulmonary neuroendocrine neoplasms. Endocr Pathol 31:254-263

    Article  CAS  PubMed  Google Scholar 

  8. Juhlin CC, Zedenius J, Höög (2020) A clinical routine application of the second-generation neuroendocrine markers ISL1, INSM1, and secretagogin in neuroendocrine neoplasia: staining outcomes and potential clues for determining tumor origin. Endocr Pathol. 2020 Aug 19. Online ahead of print. PMID: 32813226

  9. Derks JL, Leblay N, Lantuejoul S, Dingemans AC, Speel EM, Fernandez-Cuesta L (2018) New insights into the molecular characteristics of pulmonary carcinoids and large cell neuroendocrine carcinomas, and the impact on their clinical management. J Thorac Oncol 13:752-766

    Article  CAS  PubMed  Google Scholar 

  10. Dinter H, Bohnenberger H, Beck J, et al (2019) Molecular classification of neuroendocrine tumors of the thymus. J Thorac Oncol 14:1472-1483

    Article  CAS  PubMed  Google Scholar 

  11. Pelosi G, Cave J, Ottensmeier CH (2017) Towards personalised medicine in lung and thymus neuroendocrine tumours. Lancet Oncol 18:1563-1565

    Article  PubMed  Google Scholar 

  12. Poirier JT, George J, Owonikoko TK, et al (2020) new approaches to SCLC therapy: from the laboratory to the clinic. J Thorac Oncol 15:520-540

    Article  PubMed  Google Scholar 

  13. Rickman DS, Beltran H, Demichelis F, Rubin MA (2017) Biology and evolution of poorly differentiated neuroendocrine tumors. Nat Med 23:1-10

    Article  CAS  PubMed  Google Scholar 

  14. Baine MK, Rekhtman N (2020) Multiple faces of pulmonary large cell neuroendocrine carcinoma: update with a focus on practical approach to diagnosis. Transl Lung Cancer Res 9:860-878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Swarts DRA, Ramaekers FCS. Speel E-JM (2012) Molecular and cellular biology of neuroendocrine lung tumors: evidence for separate biological entities. Biochim Biophys Acta 1826:255–271

    CAS  PubMed  Google Scholar 

  16. Kalari S, Jung M, Kernstine KH, Takahashi T, Pfeifer GP (2012) The DNA methylation landscape of small cell lung cancer suggests a differentiation defect of neuroendocrine cells. Oncogene 32:3559–3568

    Article  PubMed  PubMed Central  Google Scholar 

  17. Canadas I, Rojo F, Taus A, et al (2013) Targeting epithelial-to-mesenchymal transition with Met inhibitors reverts chemoresistance in small cell lung cancer. Clin Cancer Res 20:938–950

    Article  PubMed  Google Scholar 

  18. Rudin CM, Durinck S, Stawiski EW, et al (2012) Comprehensive genomic analysis identifies SOX2 as a frequently amplified gene in small-cell lung cancer. Nat Genet 44:1111–1116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Peifer M, Fernandez-Cuesta L, Sos ML, et al (2012) Integrative genome analyses identify key somatic driver mutations of small-cell lung cancer. Nat Genet 44:1104–1110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lee J-K, Lee J, Kim S, et al (2017) Clonal history and genetic predictors of transformation into small-cell carcinomas from lung adenocarcinomas. J Clin Oncol 35:3065–3074

    Article  CAS  PubMed  Google Scholar 

  21. George J, Lim JS, Jang SJ, et al (2015) Comprehensive genomic profiles of small cell lung cancer. Nature 524:47–53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Byers LA, Wang J, Nilsson MB, et al (2012) Proteomic profiling identifies dysregulated pathways in small cell lung cancer and novel therapeutic targets including PARP1. Cancer Discov 2:798–811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chen HJ, Poran A, Unni AM, Huang SX, Elemento O, Snoeck HW, Varmus H (2019) Generation of pulmonary neuroendocrine cells and SCLC-like tumors from human embryonic stem cells. J Exp Med 216:674-687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rudin CM, Pietanza MC, Bauer TM, et al (2017) Rovalpituzumab tesirine, a DLL3-targeted antibody-drug conjugate, in recurrent small-cell lung cancer: a first-in-human, first-in-class, open label, phase 1 study. Lancet Oncol 18:42–51

    Article  CAS  PubMed  Google Scholar 

  25. Lou G, Yu X, Song Z (2017) Molecular profiling and survival of completely resected primary pulmonary neuroendocrine carcinoma. Clin Lung Cancer 18:e197–e201

    Article  CAS  PubMed  Google Scholar 

  26. Vollbrecht C, Werner R, Walter RF, Christoph DC, Heukamp LC, Peifer M, Hirsch B, Burbat L, Mairinger T, Schmid KW, Wohlschlaeger J, Mairinger FD (2015) Mutational analysis of pulmonary tumours with neuroendocrine features using targeted massive parallel sequencing: a comparison of a neglected tumour group. Br J Cancer 113:1704-1711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Borges M, Linnoila RI, van de Velde HJ, et al (1997) An achaete-scute homologue essential for neuroendocrine differentiation in the lung. Nature 386: 852-855

    Article  CAS  PubMed  Google Scholar 

  28. Augustyn A, Borromeo M, Wang T, et al (2014) ASCL1 is a lineage oncogene providing therapeutic targets for high-grade neuroendocrine lung cancers. Proc Natl Acad Sci USA 111:14788-14793

    Article  CAS  PubMed  Google Scholar 

  29. Rudin CM, Poirier JT, Byers LA, et al (2019) Molecular subtypes of small cell lung cancer: a synthesis of human and mouse model data. Nat Rev Cancer 19:289-297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Baine MK, Hsieh MS, Lai WV, Egger JV, Jungbluth AA, Daneshbod Y, Beras A, Spencer R, Lopardo J, Bodd F, Montecalvo J, Sauter JL, Chang JC, Buonocore DJ, Travis WD, Sen T, Poirier JT, Rudin CM, Rekhtman N. SCLC Subtypes Defined by ASCL1, NEUROD1, POU2F3, and YAP1: A Comprehensive Immunohistochemical and Histopathologic Characterization. J Thorac Oncol. 2020 Dec;15(12):1823-1835.

    Article  CAS  PubMed  Google Scholar 

  31. Zhang W, Girard L, Zhang YA, et al (2018) Small cell lung cancer tumors and preclinical models display heterogeneity of neuroendocrine phenotypes. Transl Lung Cancer Res 7:32-49

    Article  PubMed  PubMed Central  Google Scholar 

  32. La Rosa S, Marando A, Gatti G, et al (2013) Achaete-scute homolog 1 as a marker of poorly differentiated neuroendocrine carcinomas of different sites: a validation study using immunohistochemistry and quantitative real-time polymerase chain reaction on 335 cases. Hum Pathol 44:1391-1399

    Article  PubMed  Google Scholar 

  33. Osada H, Tatematsu Y, Yatabe Y, Horio Y, Takahashi T (2005) ASH1 gene is a specific therapeutic target for lung cancers with neuroendocrine features. Cancer Res 65:10680-10685

    Article  CAS  PubMed  Google Scholar 

  34. Kudoh S, Tenjin Y, Kameyama H, Ichimura T, Yamada T, Matsuo A, Kudo N, Sato Y, Ito T (2020) Significance of achaete-scute complex homologue 1 (ASCL1) in pulmonary neuroendocrine carcinomas; RNA sequence analyses using small cell lung cancer cells and Ascl1-induced pulmonary neuroendocrine carcinoma cells. Histochem Cell Biol 153:443-456

    Article  CAS  PubMed  Google Scholar 

  35. George J, Saito M, Tsuta K, et al (2016) Genomic amplification of CD274 (PD-L1) in small-cell lung cancer. Clin Cancer Res 23:1220–1226

    Article  PubMed  PubMed Central  Google Scholar 

  36. Pelosi G, Bianchi F, Dama E, Simbolo M, Mafficini A, Sonzogni A, Pilotto S, Harari S, Papotti M, Volante M, Fontanini G, Mastracci L, Albini A, Bria E, Calabrese F, Scarpa A (2018) Most high-grade neuroendocrine tumours of the lung are likely to secondarily develop from pre-existing carcinoids: innovative findings skipping the current pathogenesis paradigm. Virchows Arch 472:567-577

    Article  PubMed  Google Scholar 

  37. Pelosi G, Bianchi F, Hofman P, Pattini L, Strobel P, Calabrese F, Naheed S, Holden C, Cave J, Bohnenberger H, Dinter H, Harari S, Albini A, Sonzogni A, Papotti M, Volante M, Ottensmeier CH (2019) Recent advances in the molecular landscape of lung neuroendocrine tumors. Expert Rev Mol Diagn 19:281-297

    Article  CAS  PubMed  Google Scholar 

  38. Pelosi G, Sonzogni A, Harari S, Albini A, Bresaola E, Marchio C, Massa F, Righi L, Gatti G, Papanikolaou N, Vijayvergia N, Calabrese F, Papotti M (2017) Classification of pulmonary neuroendocrine tumors: new insights Transl Lung Cancer Res 6:513-529

    CAS  Google Scholar 

  39. Katoh M, Katoh M (2020) Precision medicine for human cancers with Notch signaling dysregulation. Int J Mol Med 45:279-297

    CAS  PubMed  Google Scholar 

  40. Sonkin D, Thomas A, Teicher BA (2019) Are neuroendocrine negative small cell lung cancer and large cell neuroendocrine carcinoma with WT RB1 two faces of the same entity? Lung Cancer Manag 8:LMT13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Motylewska E, Braun M, Stępień H (2020) High expression of NEK2 and PIM1, but not PIM3, is linked to an aggressive phenotype of bronchopulmonary neuroendocrine neoplasms. Endocr Pathol 31:264–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kokuryo T, Yokoyama Y, Yamaguchi J, Tsunoda N, Ebata T, Nagino M (2019) NEK2 is an effective target for cancer therapy with potential to induce regression of multiple human malignancies. Anticancer Res 39:2251-2258.

    Article  CAS  PubMed  Google Scholar 

  43. Zhang X, Song M, Kundu JK, Lee MH, Liu ZZ (2018) PIM kinase as an executional target in cancer. J Cancer Prev 23:109-116

    Article  PubMed  PubMed Central  Google Scholar 

  44. Naidoo J, Santos-Zabala ML, Iyriboz T, et al (2016) Large cell neuroendocrine carcinoma of the lung: clinico-pathologic features, treatment, and outcomes. Clin Lung Cancer 17:e121– e129

    Article  PubMed  PubMed Central  Google Scholar 

  45. Karlsson A, Brunnstrom H, Lindquist KE, et al (2015) Mutational and gene fusion analyses of primary large cell and large cell neuroendocrine lung cancer. Oncotarget 6:22028–22037

    Article  PubMed  PubMed Central  Google Scholar 

  46. Rekhtman N, Pietanza MC, Hellmann MD, et al (2016) Next-generation sequencing of pulmonary large cell neuroendocrine carcinoma reveals small cell carcinoma-like and non-small cell carcinoma-like subsets. Clin Cancer Res 22:3618-3629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. George J, Walter V, Peifer M, et al (2018) Integrative genomic profiling of large-cell neuroendocrine carcinomas reveals distinct subtypes of high-grade neuroendocrine lung tumors. Nat Commun 9:1048

    Article  PubMed  PubMed Central  Google Scholar 

  48. Simbolo M, Barbi S, Fassan M, et al (2019) Gene expression profiling of lung atypical carcinoids and large cell neuroendocrine carcinomas identifies three transcriptomic subtypes with specific genomic alterations. J Thorac Oncol 14:1651-1661

    Article  CAS  PubMed  Google Scholar 

  49. Alcala N, Leblay N, Gabriel AAG, et al (2019) Integrative and comparative genomic analyses identify clinically relevant pulmonary carcinoid groups and unveil the supra-carcinoids. Nat Commun 10:3407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhou Z, Zhu L, Niu X, Shen S, Zhao Y, Zhang J, Ye J, Han-Zhang H, Liu J, Liu C, Lu S (2019) Comparison of genomic landscapes of large cell neuroendocrine carcinoma, small cell lung carcinoma, and large cell carcinoma Thorac Cancer 10:839-847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hermans BCM, Derks JL, Thunnissen E, et al (2019) DLL3 expression in large cell neuroendocrine carcinoma (LCNEC) and association with molecular subtypes and neuroendocrine profile. Lung Cancer 138:102-108

    Article  CAS  PubMed  Google Scholar 

  52. Zhuo M, Guan Y, Yang X, Hong L, et al (2020) The prognostic and therapeutic role of genomic subtyping by sequencing tumor or cell-free DNA in pulmonary large-cell neuroendocrine carcinoma. Clin Cancer Res 26:892-901

    Article  CAS  PubMed  Google Scholar 

  53. Derks JL, Leblay N, Thunnissen E, van Suylen RJ, den Bakker M, Groen HJM, Smit EF, Damhuis R, van den Broek EC, Charbrier A, Foll M, McKay JD, Fernandez-Cuesta L, Speel EM, Dingemans AC, Group P (2018) Molecular subtypes of pulmonary large-cell neuroendocrine carcinoma predict chemotherapy treatment outcome. Clin Cancer Res 24:33-42

    Article  Google Scholar 

  54. Quinn AM, Chaturvedi A, Nonaka D (2017) High-grade neuroendocrine carcinoma of the lung with carcinoid morphology: a study of 12 cases. Am J Surg Pathol 41:263-270

    Article  PubMed  Google Scholar 

  55. Inafuku K, Yokose T, Ito H, Eriguchi D, Samejima J, Nagashima T, Nakayama H, Suzuki M, Yamada K, Masuda M (2019) Two cases of lung neuroendocrine carcinoma with carcinoid morphology. Diagn Pathol 14:104

    Article  PubMed  PubMed Central  Google Scholar 

  56. Cros J, Théou-Anton N, Gounant V, Nicolle R, Reyes C, Humez S, Hescot S, Thomas de Montpréville V, Guyétant S, Scoazec JY, Guyard A, de Mestier L, Brosseau S, Mordant P, Castier Y, Gentien D, Ruszniewski P, Zalcman G, Couvelard A, Cazes A (2020) Specific genomic alterations in high grade pulmonary neuroendocrine tumours with carcinoid morphology. Neuroendocrinology (Online ahead of print) PMID: 32015233

  57. Kasajima A, Konukiewitz B, Oka N, Suzuki H, Sakurada A, Okada Y, Kameya T, Ishikawa Y, Sasano H, Weichert W, Klöppel G (2019) Clinicopathological profiling of lung carcinoids with a Ki67 index >20%. Neuroendocrinology 108:109-120

    Article  CAS  PubMed  Google Scholar 

  58. Rubino M, Scoazec JY, Pisa E, Faron M, Spaggiari L, Hadoux J, Spada F, Planchard D, Cella CA, Leboulleux S, De Marinis F, Ducreux M, Lamartina L, Baudin E, Fazio N (2020) Lung carcinoids with high proliferative activity: further support for the identification of a new tumor category in the classification of lung neuroendocrine neoplasms. Lung Cancer 148:149-158

    Article  CAS  PubMed  Google Scholar 

  59. Ströbel P, Zettl A, Shilo K, Chuang WY, Nicholson AG, Matsuno Y, Gal A, Laeng RH, Engel P, Capella C, Marino M, Chan JK, Rosenwald A, Travis W, Franks TJ, Ellenberger D, Schaefer IM, Marx A (2014) Tumor genetics and survival of thymic neuroendocrine neoplasms: a multi-institutional clinicopathologic study. Genes Chromosomes Cancer 53:738-49

    Article  PubMed  Google Scholar 

  60. Li Y, Peng Y, Jiang X, Cheng Y, Zhou W, Su T, Xie J, Zhong X, Song D, Wu L, Fan L, Li M, Hong J, Wang W, Ning G, Cao Y (2017) Whole exome sequencing of thymic neuroendocrine tumor with ectopic ACTH syndrome. Eur J Endocrinol 176:187-194

    Article  CAS  PubMed  Google Scholar 

  61. Yu-fang Bi, Rui-xin Liu, Lei Ye, Hai Fang, Xiao-ying Li, Wei-qing Wang, Ji Zhang, Kan-Kan Wang, Lei Jiang, Ting-wei Su, Zhong-yuan Chen, Guang Ning (2009) Gene expression profiles of thymic neuroendocrine tumors (carcinoids) with ectopic ACTH syndrome reveal novel molecular mechanism. Endocr Relat Cancer 16:1273-82

    Article  CAS  PubMed  Google Scholar 

  62. Jia R, Sulentic P, Xu JM, Grossman AB (2017) thymic neuroendocrine neoplasms: biological behaviour and therapy. Neuroendocrinology 105:105-114

    Article  CAS  PubMed  Google Scholar 

  63. Simbolo M, Mafficini A, Sikora KO, Fassan M, Barbi S, Corbo V, Mastracci L, Rusev B, Grillo F, Vicentini C, Ferrara R, Pilotto S, Davini F, Pelosi G, Lawlor RT, Chilosi M, Tortora G, Bria E, Fontanini G, Volante M, Scarpa A (2017) Lung neuroendocrine tumours: deep sequencing of the four World Health Organization histotypes reveals chromatin-remodelling genes as major players and a prognostic role for TERT, RB1, MEN1 and KMT2D. J Pathol 241:488-500

    Article  CAS  PubMed  Google Scholar 

  64. Meder L, Konig K, Ozretic L et al (2016) NOTCH, ASCL1, p53 and RB alterations define an alternative pathway driving neuroendocrine and small cell lung carcinomas. Int J Cancer 138:927-938

    Article  CAS  PubMed  Google Scholar 

  65. Fernandez-Cuesta L, Foll M (2019) Molecular studies of lung neuroendocrine neoplasms uncover new concepts and entities. Transl Lung Cancer Res 8(Suppl 4):S430-S434

    Article  PubMed  PubMed Central  Google Scholar 

  66. Rindi G, Arnold R, Bosman FT, et al (2010) Nomenclature and classification of neuroendocrine neoplasms of the digestive system. In: Bosman FT, Carneiro F, Hruban RH, Theise ND (eds) WHO classification of tumours of the digestive system, 4th edition. IARC Press, Lyon, pp 13-14

    Google Scholar 

  67. Sorbye H, Welin S, Langer SW, et al (2013) Predictive and prognostic factors for treatment and survival in 305 patients with advanced gastrointestinal neuroendocrine carcinoma (WHO G3): the NORDIC NEC study. Ann Oncol 24:152–60

    Article  CAS  PubMed  Google Scholar 

  68. Velayoudom-Cephise FL, Duvillard P, Foucan L, et al (2013) Are G3 ENETS neuroendocrine neoplasms heterogeneous? Endocr Relat Cancer 20:649–657

    Article  PubMed  Google Scholar 

  69. Basturk O, Yang Z, Tang LH, et al (2015) The high-grade (WHO G3) pancreatic neuroendocrine tumor category is morphologically and biologically heterogeneous and includes both well differentiated and poorly differentiated neoplasms. Am J Surg Pathol 39:683-390

    Article  PubMed  PubMed Central  Google Scholar 

  70. Milione M, Maisonneuve P, Spada F, et al (2017) The clinicopathologic heterogeneity of grade 3 gastroenteropancreatic neuroendocrine neoplasms: morphological differentiation and proliferation identify different prognostic categories. Neuroendocrinology 104:85-93

    Article  CAS  PubMed  Google Scholar 

  71. Klöppel G, Couvelard A, Hruban RH, Klimstra DS, Komminoth P, Osamura RY, Perren A, Rindi G (2017) Neoplasms of the neuroendocrine pancreas: introduction. In: WHO classification of tumours of endocrine organs. Lyon, IARC, pp. 211-221

    Google Scholar 

  72. Heetfeld M, Chougnet CN, Olsen IH, et al (2015) Characteristics and treatment of patients with G3 gastroenteropancreatic neuroendocrine neoplasms. Endocr Relat Cancer 22:657-664

    Article  CAS  PubMed  Google Scholar 

  73. Tang LH, Basturk O, Sue JJ, Klimstra DS (2016) A Practical Approach to the Classification of WHO Grade 3 (G3) Well-differentiated neuroendocrine tumor (WD-NET) and poorly differentiated neuroendocrine carcinoma (PD-NEC) of the pancreas. Am J Surg Pathol 40:1192-1202

    Article  PubMed  PubMed Central  Google Scholar 

  74. Mafficini A, Scarpa A (2019) Genetics and epigenetics of gastroenteropancreatic neuroendocrine neoplasms. Endocr Rev 40:506-536

    Article  PubMed  PubMed Central  Google Scholar 

  75. Puccini A, Poorman K, Salem ME, et al (2020) Comprehensive genomic profiling of gastroenteropancreatic neuroendocrine neoplasms (GEP-NENs). Clin Cancer Res 26:5943-5951

    Article  CAS  PubMed  Google Scholar 

  76. Szybowska M, Mete O, Weber E, Silver J, Kim RH (2019) Neuroendocrine neoplasms associated with germline pathogenic variants in the homologous recombination pathway. Endocr Pathol 30:237-245

    Article  PubMed  Google Scholar 

  77. Jiao Y, Shi C, Edil BH, de Wilde RF, et al (2011) DAXX/ATRX, MEN1, and mTOR pathway genes are frequently altered in pancreatic neuroendocrine tumors. Science 331:1199-1203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Scarpa A, Chang DK, Nones K, et al (2017) Whole-genome landscape of pancreatic neuroendocrine tumours. Nature 543:65-71

    Article  CAS  PubMed  Google Scholar 

  79. Corbo V, Dalai I, Scardoni M, Barbi S, Beghelli S, Bersani S, Albarello L, Doglioni C, Schott C, Capelli P, Chilosi M, Boninsegna L, Becker KF, Falconi M, Scarpa A (2010) MEN1 in pancreatic endocrine tumors: analysis of gene and protein status in 169 sporadic neoplasms reveals alterations in the vast majority of cases. Endocr Relat Cancer 17:771-783

    Article  CAS  PubMed  Google Scholar 

  80. Hessman O, Lindberg D, Einarsson A, Lillhager P, Carling T, Grimelius L, Eriksson B, Akerström G, Westin G, Skogseid B (1999) Genetic alterations on 3p, 11q13, and 18q in nonfamilial and MEN 1-associated pancreatic endocrine tumors. Genes Chromosomes Cancer 26:258-264

    Article  CAS  PubMed  Google Scholar 

  81. Heaphy CM, de Wilde RF, Jiao Y, et al (2011) Altered telomeres in tumors with ATRX and DAXX mutations. Science 333:425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Marinoni I, Kurrer AS, Vassella E, Dettmer M, Rudolph T, Banz V, Hunger F, Pasquinelli S, Speel EJ, Perren A (2014) Loss of DAXX and ATRX are associated with chromosome instability and reduced survival of patients with pancreatic neuroendocrine tumors. Gastroenterology 146:453-460

    Article  CAS  PubMed  Google Scholar 

  83. Kim JY, Brosnan-Cashman JA, An S, Kim SJ, Song KB, Kim MS, Kim MJ, Hwang DW, Meeker AK, Yu E, Kim SC, Hruban RH, Heaphy CM, Hong SM (2017) Alternative lengthening of telomeres in primary pancreatic neuroendocrine tumors is associated with aggressive clinical behavior and poor survival. Clin Cancer Res 23:1598-1606

    Article  CAS  PubMed  Google Scholar 

  84. Singhi AD, Liu TC, Roncaioli JL, Cao D, Zeh HJ, Zureikat AH, Tsung A, Marsh JW, Lee KK, Hogg ME, Bahary N, Brand RE, McGrath KM, Slivka A, Cressman KL, Fuhrer K, O'Sullivan RJ (2017) Alternative lengthening of telomeres and loss of DAXX/ATRX expression predicts metastatic disease and poor survival in patients with pancreatic neuroendocrine tumors. Clin Cancer Res 23:600-609

    Article  CAS  PubMed  Google Scholar 

  85. de Wilde RF, Heaphy CM, Maitra A, Meeker AK, Edil BH, Wolfgang CL, Ellison TA, Schulick RD, Molenaar IQ, Valk GD, Vriens MR, Borel Rinkes IH, Offerhaus GJ, Hruban RH, Matsukuma KE (2012) Loss of ATRX or DAXX expression and concomitant acquisition of the alternative lengthening of telomeres phenotype are late events in a small subset of MEN-1 syndrome pancreatic neuroendocrine tumors. Mod Pathol 25:1033-1039

    Article  PubMed  PubMed Central  Google Scholar 

  86. Chan CS, Laddha SV, Lewis PW, Koletsky MS, Robzyk K, Da Silva E, Torres PJ, Untch BR, Li J, Bose P, Chan TA, Klimstra DS, Allis CD, Tang LH (2018). ATRX, DAXX or MEN1 mutant pancreatic neuroendocrine tumors are a distinct alpha-cell signature subgroup. Nat Commun 9(1):4158

    Article  PubMed  PubMed Central  Google Scholar 

  87. Hong X, Qiao S, Li F, Wang W, Jiang R, Wu H, Chen H, Liu L, Peng J, Wang J, Jia C, Liang X, Dai H, Jiang J, Zhang T, Liao Q, Dai M, Cong L, Han X, Guo D, Liang Z, Li D, Zheng Z, Ye C, Li S, Zhao Y, Wu K, Wu W (2020) Whole-genome sequencing reveals distinct genetic bases for insulinomas and non-functional pancreatic neuroendocrine tumours: leading to a new classification system. Gut 69(5):877-887

    Article  CAS  PubMed  Google Scholar 

  88. Yachida S, Vakiani E, White CM, Zhong Y, Saunders T, Morgan R, de Wilde RF, Maitra A, Hicks J, Demarzo AM, Shi C, Sharma R, Laheru D, Edil BH, Wolfgang CL, Schulick RD, Hruban RH, Tang LH, Klimstra DS, Iacobuzio-Donahue CA (2012) Small cell and large cell neuroendocrine carcinomas of the pancreas are genetically similar and distinct from well-differentiated pancreatic neuroendocrine tumors. Am J Surg Pathol 36:173-184

    Article  PubMed  PubMed Central  Google Scholar 

  89. Vijayvergia N, Boland PM, Handorf E, Gustafson KS, Gong Y, Cooper HS, Sheriff F, Astsaturov I, Cohen SJ, Engstrom PF (2016) Molecular profiling of neuroendocrine malignancies to identify prognostic and therapeutic markers: a Fox Chase Cancer Center Pilot Study. Br J Cancer 115:564-570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Glenn ST, Jones CA, Sexton S, LeVea CM, Caraker SM, Hajduczok G, Gross KW (2014) Conditional deletion of p53 and Rb in the renin-expressing compartment of the pancreas leads to a highly penetrant metastatic pancreatic neuroendocrine carcinoma. Oncogene 33:5706-5715

    Article  CAS  PubMed  Google Scholar 

  91. Konukiewitz B, Jesinghaus M, Steiger K, Schlitter AM, Kasajima A, Sipos B, Zamboni G, Weichert W, Pfarr N, Klöppel G (2018) Pancreatic neuroendocrine carcinomas reveal a closer relationship to ductal adenocarcinomas than to neuroendocrine tumors G3. Hum Pathol 77:70-79

    Article  PubMed  Google Scholar 

  92. Kimura T, Miyamoto H, Fukuya A, Kitamura S, Okamoto K, Kimura M, Muguruma N, Ikemoto T, Shimada M, Yoneda A, Bando Y, Takishita M, Takayama T (2016) Neuroendocrine carcinoma of the pancreas with similar genetic alterations to invasive ductal adenocarcinoma. Clin J Gastroenterol 9:261-265

    Article  PubMed  Google Scholar 

  93. Venizelos, H. Elvebakken, A. Perren, G. Hjortland, A. Sundlov, J. B. Svensson, I Lothe, S. Detlefsen, H. Garresori, C. Kersten, S. Knappskog, H. Sorbye (2020) Mutational landscape of 109 high-grade gastroenteropancreatic neuroendocrine neoplasms G3. Neuroendocrinology 17th ENETS conference Abstract

  94. Gao HL, Wang WQ, Yu XJ, et al. (2020) Molecular drivers and cells of origin in pancreatic ductal adenocarcinoma and pancreatic neuroendocrine carcinoma. Exp Hematol Oncol 9:28

    Article  PubMed  PubMed Central  Google Scholar 

  95. La Rosa S, Inzani F, Vanoli A, Klersy C, Dainese L, Rindi G, Capella C, Bordi C, Solcia E (2011) Histologic characterization and improved prognostic evaluation of 209 gastric neuroendocrine neoplasms. Hum Pathol 42:1373-1384

    Article  PubMed  Google Scholar 

  96. La Rosa S, Rindi G, Solcia E, tang LH (2019) Gastric neuroendocrine neoplasms. In: WHO Classification of Tumours Editorial Board editors. Digestive system tumours, 5th edn, vol 1. Lyon, IARC, pp. 104-109

    Google Scholar 

  97. Trinh VQ, Shi C, Ma C (2020). Gastric neuroendocrine tumours from long-term proton pump inhibitor users are indolent tumours with good prognosis. Histopathology 77:865-876

    Article  PubMed  Google Scholar 

  98. La Rosa S, Solcia E (2020) New insights into the classification of gastric neuroendocrine tumours, expanding the spectrum of ECL-cell tumours related to hypergastrinaemia. Histopathology 77:862-864

    Article  PubMed  Google Scholar 

  99. Lee HE, Mounajjed T, Erickson LA, Wu TT (2016) Sporadic gastric well-differentiated neuroendocrine tumors have a higher Ki-67 proliferative index. Endocr Pathol 27:259-267

    Article  CAS  PubMed  Google Scholar 

  100. D'adda T, Pizzi S, Azzoni C, Bottarelli L, Crafa P, Pasquali C, Davoli C, Corleto VD, Delle Fave G, Bordi C (2002) Different patterns of 11q allelic losses in digestive endocrine tumors. Hum Pathol 33:322-329

    Article  Google Scholar 

  101. Furlan D, Cerutti R, Uccella S, La Rosa S, Rigoli E, Genasetti A, Capella C (2004) Different molecular profiles characterize well-differentiated endocrine tumors and poorly differentiated endocrine carcinomas of the gastroenteropancreatic tract. Clin Cancer Res 10:947-957

    Article  CAS  PubMed  Google Scholar 

  102. Guadagno E, Luglio G, Iacobelli A, Borrelli G, Castaldi A, De Rosa G, Del Basso De Caro M (2018) A case of gastric neuroendocrine neoplasm with mixed grade: a distinct type of "high"-grade well-differentiated neuroendocrine neoplasm. Endocr Pathol 29:289-293

    Article  CAS  PubMed  Google Scholar 

  103. Sundaresan S, Kang AJ, Hayes MM, Choi EK, Merchant JL (2017) Deletion of Men1 and somatostatin induces hypergastrinemia and gastric carcinoids. Gut 66:1012-1021

    Article  CAS  PubMed  Google Scholar 

  104. Koh J, Nam SK, Kwak Y, Kim G, Kim KK, Lee BC, Ahn SH, Park DJ, Kim HH, Park KU, Kim WH, Lee HS (2020) Comprehensive genetic features of gastric mixed adenoneuroendocrine carcinomas and pure neuroendocrine carcinomas. J Pathol 28:e5556

    Google Scholar 

  105. Makuuchi R, Terashima M, Kusuhara M, Nakajima T, Serizawa M, Hatakeyama K, Ohshima K, Urakami K, Yamaguchi K (2017) Comprehensive analysis of gene mutation and expression profiles in neuroendocrine carcinomas of the stomach. Biomed Res 38:19-27

    Article  CAS  PubMed  Google Scholar 

  106. Furlan D, Cerutti R, Genasetti A, Pelosi G, Uccella S, La Rosa S, Capella C (2003) Microallelotyping defines the monoclonal or the polyclonal origin of mixed and collision endocrine-exocrine tumors of the gut. Lab Invest 83:963-971

    Article  PubMed  Google Scholar 

  107. La Rosa S, Uccella S, Rindi G (2021) Neuroendocrine neoplasms of the gut. In: Asa SL, La Rosa S, Mete O (eds) The Spectrum of Neuroendocrine Neoplasia. Springer, Cham, pp 207-244

    Chapter  Google Scholar 

  108. Vanoli A, La Rosa S, Klersy C, Grillo F, Albarello L, Inzani F, Maragliano R, Manca R, Luinetti O, Milione M, Doglioni C, Rindi G, Capella C, Solcia E (2017) Four neuroendocrine tumor types and neuroendocrine carcinoma of the duodenum: analysis of 203 cases. Neuroendocrinology 104:112-125

    Article  CAS  PubMed  Google Scholar 

  109. Capuano F, Grami O, Pugliese L, Paulli M, Pietrabissa A, Solcia E, Vanoli A (2018) Grade 3 neuroendocrine tumor (G3 NET) in a background of multiple serotonin cell neoplasms of the ileum associated with carcinoid syndrome and aggressive behavior. Endocr Pathol 29:369-373

    Article  CAS  PubMed  Google Scholar 

  110. Anlauf M, Perren A, Henopp T, Rudolf T, Garbrecht N, Schmitt A, Raffel A, Gimm O, Weihe E, Knoefel WT, Dralle H, Heitz PU, Komminoth P, Klöppel G (2007) Allelic deletion of the MEN1 gene in duodenal gastrin and somatostatin cell neoplasms and their precursor lesions. Gut 56(5):637-44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Uccella S, La Rosa S (2020) Looking into digestive mixed neuroendocrine - nonneuroendocrine neoplasms: subtypes, prognosis, and predictive factors. Histopathology 77:700-717

    Article  PubMed  Google Scholar 

  112. Wang ZJ, An K, Li R, Shen W, Bao MD, Tao JH, Chen JN, Mei SW, Shen HY, Ma YB, Zhao FQ, Wei FZ, Liu Q (2019) Analysis of 72 patients with colorectal high-grade neuroendocrine neoplasms from three Chinese hospitals. World J Gastroenterol 25:5197-5209

    Article  PubMed  PubMed Central  Google Scholar 

  113. Couvelard A, Perren A, Sipos B (2019) Appendiceal neuroendocrine neoplasms. In: WHO Classification of Tumours Editorial Board editors. Digestive system tumours, 5th edn, vol 1. Lyon, IARC, pp. 152–155

  114. Park HY, Kwon MJ, Kang HS, Kim YJ, Kim NY, Kim MJ, Min KW, Choi KC, Nam ES, Cho SJ, Park HR, Min SK, Seo J, Choe JY, Lee HK (2019) Targeted next-generation sequencing of well-differentiated rectal, gastric, and appendiceal neuroendocrine tumors to identify potential targets. Hum Pathol 87:83-94

    Article  CAS  PubMed  Google Scholar 

  115. Takizawa N, Ohishi Y, Hirahashi M, Takahashi S, Nakamura K, Tanaka M, Oki E, Takayanagi R, Oda Y (2015) Molecular characteristics of colorectal neuroendocrine carcinoma; similarities with adenocarcinoma rather than neuroendocrine tumor. Hum Pathol 46:1890-1900

    Article  CAS  PubMed  Google Scholar 

  116. Mitsuhashi K, Yamamoto I, Kurihara H, Kanno S, Ito M, Igarashi H, Ishigami K, Sukawa Y, Tachibana M, Takahashi H, Tokino T, Maruyama R, Suzuki H, et al (2015) Analysis of the molecular features of rectal carcinoid tumors to identify new biomarkers that predict biological malignancy. Oncotarget 6:22114-22125

    Article  PubMed  PubMed Central  Google Scholar 

  117. Jesinghaus M, Konukiewitz B, Keller G, Kloor M, Steiger K, Reiche M, Penzel R, Endris V, Arsenic R, Hermann G, Stenzinger A, Weichert W, Pfarr N, Klöppel G (2017) Colorectal mixed adenoneuroendocrine carcinomas and neuroendocrine carcinomas are genetically closely related to colorectal adenocarcinomas. Mod Pathol 30:610-619

    Article  CAS  PubMed  Google Scholar 

  118. Woischke C, Schaaf CW, Yang HM, Vieth M, Veits L, Geddert H, Märkl B, Stömmer P, Schaeffer DF, Frölich M, Blum H, Vosberg S, Greif PA, Jung A, Kirchner T, Horst D (2017) In-depth mutational analyses of colorectal neuroendocrine carcinomas with adenoma or adenocarcinoma components. Mod Pathol 30:95-103

    Article  CAS  PubMed  Google Scholar 

  119. Furlan D, Sahnane N, Mazzoni M, Pastorino R, Carnevali I, Stefanoli M, Ferretti A, Chiaravalli AM, La Rosa S, Capella C (2013) Diagnostic utility of MS-MLPA in DNA methylation profiling of adenocarcinomas and neuroendocrine carcinomas of the colon-rectum. Virchows Arch 462:47-56

    Article  CAS  PubMed  Google Scholar 

  120. Sahnane N, Furlan D, Monti M, Romualdi C, Vanoli A, Vicari E, Solcia E, Capella C, Sessa F, La Rosa S (2015) Microsatellite unstable gastrointestinal neuroendocrine carcinomas: a new clinicopathologic entity. Endocr Relat Cancer 22:35-45

    Article  CAS  PubMed  Google Scholar 

  121. Chen L, Liu M, Zhang Y, Guo Y, Chen MH, Chen J (2020) Genetic characteristics of colorectal neuroendocrine carcinoma: more similar to colorectal adenocarcinoma. Clin Colorectal Cancer 9:S1533–0028(20)30125–0

  122. Vortmeyer AO, Lubensky IA, Merino MJ, Wang CY, Pham T, Furth EE, Zhuang Z (1997) Concordance of genetic alterations in poorly differentiated colorectal neuroendocrine carcinomas and associated adenocarcinomas. J Natl Cancer Inst 89:1448-1453

    Article  CAS  PubMed  Google Scholar 

  123. Shamir ER, Devine WP, Pekmezci M, Umetsu SE, Krings G, Federman S, Cho SJ, Saunders TA, Jen KY, Bergsland E, Jones K, Kim GE, Kakar S, Chiu CY, Joseph NM (2019) Identification of high-risk human papillomavirus and Rb/E2F pathway genomic alterations in mutually exclusive subsets of colorectal neuroendocrine carcinoma. Mod Pathol 32:290-305

    Article  CAS  PubMed  Google Scholar 

  124. Luchini C, Pelosi G, Scarpa A, Mattiolo P, Marchiori D, Maragliano D, Sessa F, Uccella S (2020) Neuroendocrine neoplasms of the biliary tree, liver and pancreas. Pathologica in press.

  125. Lee SM, Sung CO (2020) Neuroendocrine carcinomas of the gallbladder: a clinicopathologic and immunohistochemical analysis of 34 resected cases. Am J Surg Pathol 44:1308-1321

    Article  PubMed  Google Scholar 

  126. Sciarra A, Missiaglia E, Trimech M, Melloul E, Brouland JP, Sempoux C, La Rosa S (2020) Gallbladder mixed neuroendocrine-non-neuroendocrine neoplasm (MiNEN) arising in intracholecystic papillary neoplasm: clinicopathologic and molecular analysis of a case and review of the literature. Endocr Pathol 31:84-93

    Article  CAS  PubMed  Google Scholar 

  127. Li M, Liu F, Zhang Y, Wu X, Wu W, Wang XA, Zhao S, Liu S, Liang H, Zhang F, Ma Q, Xiang S, Li H, Jiang L, Hu Y, Gong W, Zhang Y, Ma T, Zhang K, Liu Y, Liu Y (2017) Whole-genome sequencing reveals the mutational landscape of metastatic small-cell gallbladder neuroendocrine carcinoma (GB-SCNEC). Cancer Lett 391:20-27

    Article  CAS  PubMed  Google Scholar 

  128. Rasmussen JØ, von Holstein SL, Prause JU, Vainer B, Hansen AB, Fehr A, Stenman G, Heegaard S (2014) Genetic analysis of an orbital metastasis from a primary hepatic neuroendocrine carcinoma. Oncol Rep 32:1447-1450

    Article  PubMed  Google Scholar 

  129. Shastri A, Msaouel P, Montagna C, White S, Delio M, Patel K, Alexis K, Strakhan M, Elrafei TN, Reed LJ (2016) Primary hepatic small cell carcinoma: two case reports, molecular characterization and pooled analysis of known clinical data. Anticancer Res 36:271-277

    CAS  PubMed  Google Scholar 

  130. Pastrián LG, Ruz-Caracuel I, Gonzalez RS (2019) Giant primary neuroendocrine neoplasms of the liver: report of 2 cases with molecular characterization. Int J Surg Pathol 27893–899

  131. Uccella S, La Rosa S (2021) Neuroendocrine neoplasms of the upper aerodigestive tract, ear, and salivary glands. In: Asa SL, La Rosa S, Mete O (eds) The Spectrum of Neuroendocrine Neoplasia. Springer, Cham, pp 97-118

    Chapter  Google Scholar 

  132. Uccella S, Mathias-Guiu X, La Rosa S (2021) Genitourinary neuroendocrine neoplasms. In: Asa SL, La Rosa, Mete O (eds) The Spectrum of Neuroendocrine Neoplasia. Springer, Cham, pp 301-333

    Google Scholar 

  133. Bussolati G, Badve S (2012) Carcinomas with neuroendocrine features. In Lakhani SR, Ellis IO, Schnitt SJ, Tan PH, van de Vijver MJ (eds) WHO classification of tumours of the breast. IARC Press, Lyon.

    Google Scholar 

  134. Rindi G, Klimstra DS, Abedi-Ardekani B, et al (2018) A common classification framework for neuroendocrine neoplasms: an International Agency for Research on Cancer (IARC) and World Health Organization (WHO) expert consensus proposal. Mod Pathol 31:1770‐1786

    Article  PubMed  PubMed Central  Google Scholar 

  135. Rakha EA, Reis-Filho JS, Sasano H, Wu Y (2019) Neuroendocrine tumor. In: WHO classification of tumours editorial board. Breast tumours. WHO classification of tumours series, 5th ed. IARC, Lyon, pp 156-158

    Google Scholar 

  136. Uccella S, Finzi G, Sessa F, La Rosa S (2020) On the endless dilemma of neuroendocrine neoplasms of the breast: a journey through concepts and entities. Endocr Pathol 31:321-329

    Article  PubMed  Google Scholar 

  137. McCullar B, Pandey M, Yaghmour G, Hare F, Patel K, Stein K, Feldman R, Chandler JC, Martin MG (2016) Genomic landscape of small cell carcinoma of the breast contrasted to small cell carcinoma of the lung. Breast Cancer Res Treat 158:195‐202

    Article  CAS  PubMed  Google Scholar 

  138. Kervarrec T, Samimi M, Guyétant S, Sarma B, Chéret J, Blanchard E, Berthon P, Schrama D, Houben R, Touzé A (2019) Histogenesis of Merkel Cell Carcinoma: A Comprehensive Review. Front Oncol 10;9:451

    Article  Google Scholar 

  139. Feng H, Shuda M, Chang Y, Moore PS. Clonal integration of a polyomavirus in human Merkel cell carcinoma. Science. 2008;319(5866):1096–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Harms PW, Vats P, Verhaegen ME, Robinson DR, Wu YM, Dhanasekaran SM, Palanisamy N, Siddiqui J, Cao X, Su F, Wang R. The distinctive mutational spectra of polyomavirus-negative Merkel cell carcinoma. Cancer Res. 2015;75(18):3720–7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. González-Vela MDC, Curiel-Olmo S, Derdak S, Beltran S, Santibañez M, Martínez N, et al. (2017) Shared oncogenic pathways implicated in both viruspositive and uv-induced Merkel cell carcinomas. J Invest Dermatol 137:197–206

    Article  PubMed  Google Scholar 

  142. Asioli S. (2021) Skin Neuroendocrine Neoplasms. In: Asa S.L., La Rosa S., Mete O. (eds) The Spectrum of Neuroendocrine Neoplasia. Springer, Cham, pp 335-356

    Chapter  Google Scholar 

  143. Knepper TC, Montesion M, Russell JS, Sokol ES, Frampton GM, Miller VA, Albacker LA, McLeod HL, Eroglu Z, Khushalani NI, Sondak VK, Messina JL, Schell MJ, DeCaprio JA, Tsai KY, Brohl AS (2019) The Genomic Landscape of Merkel Cell Carcinoma and Clinicogenomic Biomarkers of Response to Immune Checkpoint Inhibitor Therapy. Clin Cancer Res 25(19):5961-5971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Uccella S, Ottini G, Facco C, Maragliano R, Asioli S, Sessa F, La Rosa S (2017) Neuroendocrine neoplasms of the head and neck and olfactory neuroblastoma. Diagnosis and classification. Pathologica 109:14-30

    CAS  PubMed  Google Scholar 

  145. Ferlito A, Strojan P, Lewis JS Jr, Perez-Ordoñez B, Rinaldo A (2014) Large cell neuroendocrine carcinoma of the head and neck: a distinct clinicopathologic entity. Eur Arch Otorhinolaryngol 271:2093-2095

    Article  PubMed  Google Scholar 

  146. Lewis JS Jr, Spence DC, Chiosea S, Barnes EL Jr, Brandwein-Gensler M, El-Mofty SK (2010) Large cell neuroendocrine carcinoma of the larynx: definition of an entity. Head Neck Pathol 4:198-207

    Article  PubMed  PubMed Central  Google Scholar 

  147. Goyal B, Duncavage EJ, Martinez D, Lewis JS Jr, Chernock RD (2014) Next-generation sequencing of salivary high-grade neuroendocrine carcinomas identifies alterations in RB1 and the mTOR pathway. Exp Mol Pathol 97:572-578

    Article  CAS  PubMed  Google Scholar 

  148. Alos L, Hakim S, Larque AB, de la Oliva J, Rodriguez-Carunchio L, Caballero M, Nadal A, Marti C, Guimera N, Fernandez-Figueras MT, Quint W, Ordi J (2016) p16 overexpression in high-grade neuroendocrine carcinomas of the head and neck: potential diagnostic pitfall with HPV-related carcinomas. Virchows Arch 469:277-284

    Article  CAS  PubMed  Google Scholar 

  149. La Rosa S, Furlan D, Franzi F, Battaglia P, Frattini M, Zanellato E, Marando A, Sahnane N, Turri-Zanoni M, Castelnuovo P, Capella C (2013) Mixed exocrine-neuroendocrine carcinoma of the nasal cavity: clinico-pathologic and molecular study of a case and review of the literature. Head Neck Pathol 7:76-84

    Article  PubMed  Google Scholar 

  150. Agaimy A, Jain D, Uddin N, Rooper LM, Bishop JA (2020) SMARCA4-deficient sinonasal carcinoma: a series of 10 cases expanding the genetic spectrum of swi/snf-driven sinonasal malignancies. Am J Surg Pathol 44:703-710

    Article  PubMed  Google Scholar 

  151. Dogan S, Vasudevaraja V, Xu B, Serrano J, Ptashkin RN, Jung HJ, Chiang S, Jungbluth AA, Cohen MA, Ganly I, Berger MF, Momeni Boroujeni A, Ghossein RA, Ladanyi M, Chute DJ, Snuderl M (2019) DNA methylation-based classification of sinonasal undifferentiated carcinoma. Mod Pathol 32:1447-1459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Dogan S, Cotzia P, Ptashkin RN, Nanjangud GJ, Xu B, Momeni Boroujeni A, Cohen MA, Pfister DG, Prasad ML, Antonescu CR, Chen Y, Gounder MM (2020) Genetic basis of SMARCB1 protein loss in 22 sinonasal carcinomas. Hum Pathol 104:105-116

    Article  CAS  PubMed  Google Scholar 

  153. Riobello C, López-Hernández A, Cabal VN, García-Marín R, Suárez-Fernández L, Sánchez-Fernández P, Vivanco B, Blanco V, López F, Franchi A, Llorente JL, Hermsen MA (2020) IDH2 mutation analysis in undifferentiated and poorly differentiated sinonasal carcinomas for diagnosis and clinical management. Am J Surg Pathol 44:396-405

    Article  PubMed  Google Scholar 

  154. La Rosa S, Bernasconi B, Micello D, Finzi G, Capella C (2009) Primary small cell neuroendocrine carcinoma of the kidney: morphological, immunohistochemical, ultrastructural, and cytogenetic study of a case and review of the literature. Endocr Pathol 20:24-34

    Article  PubMed  Google Scholar 

  155. Chang MT, Penson A, Desai NB, Socci ND, Shen R, Seshan VE, Kundra R, Abeshouse A, Viale A, Cha EK, Hao X, Reuter VE, Rudin CM, Bochner BH, Rosenberg JE, Bajorin DF, Schultz N, Berger MF, Iyer G, Solit DB, Al-Ahmadie HA, Taylor BS (2018) Small-Cell Carcinomas of the Bladder and Lung Are Characterized by a Convergent but Distinct Pathogenesis. Clin Cancer Res 24(8):1965-1973

    Article  CAS  PubMed  Google Scholar 

  156. Priemer DS, Wang M, Zhang S, Lopez-Beltran A, Kouba E, Montironi R, Davidson DD, MacLennan GT, Wang L, Osunkoya AO, Deng Y, Emerson RE, Cheng L (2018) Small-cell carcinomas of the urinary bladder and prostate: TERT promoter mutation status differentiates sites of malignancy and provides evidence of common clonality between small-cell carcinoma of the urinary bladder and urothelial carcinoma. Eur Urol Focus 4:880-888

    Article  PubMed  Google Scholar 

  157. Williamson SR, Zhang S, Yao JL, Huang J, Lopez-Beltran A, Shen S, Osunkoya AO, MacLennan GT, Montironi R, Cheng L (2011) ERG-TMPRSS2 rearrangement is shared by concurrent prostatic adenocarcinoma and prostatic small cell carcinoma and absent in small cell carcinoma of the urinary bladder: evidence supporting monoclonal origin. Mod Pathol 24:1120-1127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Wu Y, Gao Y, Dou X, Yue J (2020) Metastatic castration-resistant prostate cancer with neuroendocrine transformation and BRCA 1 germ-line mutation: a case report and literature review. Onco Targets Ther 13:8049-8054

    Article  PubMed  PubMed Central  Google Scholar 

  159. Kosaka T, Hongo H, Aimono E, Matsumoto K, Hayashida T, Mikami S, Nishihara H, Oya M (2019) A first Japanese case of neuroendocrine prostate cancer accompanied by lung and brain metastasis with somatic and germline BRCA2 mutation. Pathol Int 69:715-720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Castle PE, Pierz A, Stoler MH (2018) A systematic review and meta-analysis on the attribution of human papillomavirus (HPV) in neuroendocrine cancers of the cervix. Gynecol Oncol 148:422-429

    Article  PubMed  Google Scholar 

  161. Xing D, Zheng G, Schoolmeester JK, Li Z, Pallavajjala A, Haley L, Conner MG, Vang R, Hung CF, Wu TC, Ronnett BM (2018) Next-generation sequencing reveals recurrent somatic mutations in small cell neuroendocrine carcinoma of the uterine cervix. Am J Surg Pathol 42:750-760

    Article  PubMed  PubMed Central  Google Scholar 

  162. Cimic A, Vranic S, Arguello D, Contreras E, Gatalica Z, Swensen J (2020) Molecular profiling reveals limited targetable biomarkers in neuroendocrine carcinoma of the cervix. Appl Immunohistochem Mol Morphol doi: https://doi.org/10.1097/PAI.0000000000000884. Epub ahead of print. PMID: 33208671

  163. Hillman RT, Cardnell R, Fujimoto J, Lee WC, Zhang J, Byers LA, Ramalingam P, Leitao M, Swisher E, Futreal PA, Frumovitz M (2020) Comparative genomics of high grade neuroendocrine carcinoma of the cervix. PLoS One 15:e0234505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Howitt BE, Dong F, Vivero M, Shah V, Lindeman N, Schoolmeester JK, Baltay M, MacConaill L, Sholl LM, Nucci MR, McCluggage WG (2020) Molecular characterization of neuroendocrine carcinomas of the endometrium: representation in all 4 TCGA groups. Am J Surg Pathol 44:1541-1548

    Article  PubMed  Google Scholar 

  165. Capella C, Heitz PU, Höfler H, Solcia E, Klöppel G (1994) Revised classification of neuroendocrine tumors of the lung, pancreas and gut. Digestion 55(Suppl 3):11-23

    Article  PubMed  Google Scholar 

  166. Pellat A, Coriat R (2020) Well differentiated grade 3 neuroendocrine tumors of the digestive tract: a narrative review. J Clin Med 9:1677

    Article  PubMed Central  Google Scholar 

  167. Tan HL, Sood A, Rahimi HA, Wang W, Gupta N, Hicks J, Mosier S, Gocke CD, Epstein JI, Netto GJ, Liu W, Isaacs WB, De Marzo AM, Lotan TL (2014) Rb loss is characteristic of prostatic small cell neuroendocrine carcinoma. Clin Cancer Res 20:890-903

    Article  CAS  PubMed  Google Scholar 

  168. Morgan S, Slodkowska E, Parra-Herran C, Mirkovic J (2019) PD-L1, RB1 and mismatch repair protein immunohistochemical expression in neuroendocrine carcinoma, small cell type, of the uterine cervix. Histopathology 74:997-1004

    Article  PubMed  Google Scholar 

  169. Yemelyanova A, Vang R, Kshirsagar M, Lu D, Marks MA, Shih IeM, Kurman RJ (2011) Immunohistochemical staining patterns of p53 can serve as a surrogate marker for TP53 mutations in ovarian carcinoma: an immunohistochemical and nucleotide sequencing analysis. Mod Pathol 24:1248-1253

    Article  CAS  PubMed  Google Scholar 

  170. Hechtman JF, Klimstra DS, Nanjangud G, Frosina D, Shia J, Jungbluth AA (2019) Performance of DAXX immunohistochemistry as a screen for DAXX mutations in pancreatic neuroendocrine tumors. Pancreas 48:396-399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Samdani RT, Wasylishen AR, Halperin DM, Dasari A, Yao JC, Rashid A, Estrella JS (2019) loss of menin expression by immunohistochemistry in pancreatic neuroendocrine tumors: comparison between primary and metastatic tumors. Pancreas 48:510-513

    Article  CAS  PubMed  Google Scholar 

  172. Cives M, Pelle' E, Strosberg J (2020) Emerging treatment options for gastroenteropancreatic neuroendocrine tumors. J Clin Med 9:E3655

    Article  PubMed  Google Scholar 

  173. Vijayvergia N, Dasari A (2020) Targeted therapies in the management of well-differentiated digestive and lung neuroendocrine neoplasms. Curr Treat Options Oncol 21:96

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia Uccella.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uccella, S., La Rosa, S., Metovic, J. et al. Genomics of High-Grade Neuroendocrine Neoplasms: Well-Differentiated Neuroendocrine Tumor with High-Grade Features (G3 NET) and Neuroendocrine Carcinomas (NEC) of Various Anatomic Sites. Endocr Pathol 32, 192–210 (2021). https://doi.org/10.1007/s12022-020-09660-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12022-020-09660-z

Keywords

Navigation