Skip to main content

Advertisement

Log in

Dose-dependent effects of lead and cadmium and the influence of soil properties on their uptake by Helix aspersa: an ecotoxicity test approach

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

Three soil types with different physicochemical properties were selected to evaluate their effect on lead and cadmium bioavailability and toxicity in the land snail Helix aspersa. In 28-day ecotoxicity tests, H. aspersa juveniles were exposed to increasing concentrations of Pb or Cd. EC50s, concentrations reducing snail growth by 50%, differed between the soils and so did Cd and Pb uptake in the snails. For lead, EC50s were 2397–6357 mg Pb/kg dry soil, while they ranged between 327 and 910 mg Cd/kg dry soil for cadmium. Toxicity and metal uptake were highest on the soil with the lowest pH, organic matter content and Cation Exchange Capacity (CEC). Growth reduction was correlated with metal accumulation levels in the snails’ soft body, and differences in toxicity between the soils decreased when EC50s were expressed on the basis of internal metal concentrations in the snails. These results confirm the effect of soil properties; pH, CEC, OM content, on the uptake and growth effect of Pb and Cd in H. aspersa, indicating the importance of properly characterizing soils when assessing the environmental risk of metal contaminated sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The authors declare the availability of data and material.

References

  • Alloway BJ (ed) (2013) Heavy metals in soils: Trace metals and metalloids in soils and their bioavailability. Environmental Pollution series, vol 22. Springer Science, Dordrecht, The Netherlands

  • Ardestani MM, Van Gestel CAM (2013) Using a toxicokinetics approach to explain the effect of soil pH on cadmium bioavailability to Folsomia candida. Environ Pollut 180:122–130

    Article  CAS  Google Scholar 

  • Ardestani MM, Van Straalen NM, Van, Gestel CAM (2014) Uptake and elimination kinetics of metals in soil invertebrates: a review. Environ. Pollut 193:277–295

    Article  CAS  Google Scholar 

  • Ayangbenro AS, Babalola OO (2017) A new strategy for heavy metal polluted environments: a review of microbial biosorbents. Int J Environ Res Public Health 14:94

    Article  Google Scholar 

  • Barker GM (2001) Gastropods on land: phylogeny, diversity and adaptive morphology. Biology Terr Molluscs 1:139

    Google Scholar 

  • Beeby A (1985) The role of Helix aspersa as a major herbivore in the transfer of lead through a polluted ecosystem. J Appl Ecol 22:267–275

    Article  Google Scholar 

  • Belhiouani H, El Hadef El Okki M, Afri-Mehennaoui F-Z, Sahli L (2019) Terrestrial gastropod diversity, distribution and abundance in areas with and without anthropogenic disturbances, Northeast Algeria. Biodivers J Biol Divers 20:243–249

    Article  Google Scholar 

  • Bigalke M, Ulrich A, Rehmus A, Keller A (2017) Accumulation of cadmium and uranium in arable soils in Switzerland. Environ Pollut 221:85–93

    Article  CAS  Google Scholar 

  • Boyd RS (2010) Heavy metal pollutants and chemical ecology: exploring new frontiers. J Chem Ecol 36:46–58

    Article  CAS  Google Scholar 

  • Bradham KD, Dayton EA, Basta NT, Schroder J, Payton M, Lanno RP (2006) Effect of soil properties on lead bioavailability and toxicity to earthworms. Environ Toxicol Chem 25:769–775

    Article  CAS  Google Scholar 

  • Bur T, Crouau Y, Bianco A, Gandois L, Probst A (2012) Toxicity of Pb and of Pb/Cd combination on the springtail Folsomia candida in natural soils: Reproduction, growth and bioaccumulation as indicators. Sci Total Environ 414:187–197

    Article  CAS  Google Scholar 

  • Burgos-Aceves MA, Cohen A, Smith Y, Faggio C (2018) MicroRNAs and their role on fish oxidative stress during xenobiotic environmental exposures. Ecotoxicol Environ Saf 148:995–1000

    Article  CAS  Google Scholar 

  • Capillo G, Silvestro S, Sanfilippo M, Fiorino E, Giangrosso G, Ferrantelli V, Vazzana I, Faggio C (2018) Assessment of Electrolytes and Metals Profile of the Faro Lake (Capo Peloro Lagoon, Sicily, Italy) and Its Impact on Mytilus galloprovincialis. Chem Biodivers 15:1800044

    Article  Google Scholar 

  • Castro-Ferreira MP, Roelofs D, van Gestel CAM, Verweij RA, Soares AMVM, Amorim MJB (2012) Enchytraeus crypticus as model species in soil ecotoxicology. Chemosphere 87:1222–1227

    Article  CAS  Google Scholar 

  • Chassin P, Baize D, Cambier P, Sterckeman T (1996) Les éléments traces métalliques et la qualité des sols. Impact à moyen et à long terme. Etud. Gestion Sols 3:297–306

    Google Scholar 

  • Coeurdassier M, Gomot-De Vaufleury A, Lovy C, Badot P-M (2002) Is the cadmium uptake from soil important in bioaccumulation and toxic effects for snails? Ecotoxicol Environ Saf 53:425–431

    Article  CAS  Google Scholar 

  • Commission of the European communities (2006) Communication from the commission to the council, the European parliament, the European Economic and Social committee and the committee of the regions. Thematic Strategy Soil Prot. 2006:231

    Google Scholar 

  • Coughtrey PJ, Martin MH (1976) The distribution of Pb, Zn, Cd and Cu within the pulmonate mollusc Helix aspersa Müller. Oecologia 23:315–322

    Article  CAS  Google Scholar 

  • Dallinger R (1993) Strategies of metal detoxification in terrestrial invertebrates. In: Dallinger E. & Rainbow R. (eds)-Ecotoxicology of metals in Invertebrates. Lewis Publischers, Boca Raton, FL, USA, pp. 245–289

  • Dallinger R, Berger B, Triebskorn-Köhler R, Köhler H (2001) Soil biology and ecotoxicology. The biology of terrestrial molluscs. Barker GM (ed). CABI Publishing, Wallingford, p 489–525

  • Davies NA, Hodson ME, Black S (2003) The influence of time on lead toxicity and bioaccumulation determined by the OECD earthworm toxicity test. Environ Pollut 121:55–61

    Article  CAS  Google Scholar 

  • Davis HT, Marjorie Aelion C, McDermott S, Lawson AB (2009) Identifying natural and anthropogenic sources of metals in urban and rural soils using GIS-based data, PCA, and spatial interpolation. Environ Pollut 157:2378–2385

    Article  CAS  Google Scholar 

  • Dhaliwal SS, Singh J, Taneja PK, Mandal A (2020) Remediation techniques for removal of heavy metals from the soil contaminated through different sources: a review. Environ Sci Pollut Res 27:1319–1333

    Article  Google Scholar 

  • Dias GM, Edwards GC (2003) Differentiating natural and anthropogenic sources of metals to the environment. Hum Ecol Risk Assess Int J 9:699–721

    Article  CAS  Google Scholar 

  • Díez-Ortiz M, Giska I, Groot M, Borgman EM, Van Gestel CAM (2010) Influence of soil properties on molybdenum uptake and elimination kinetics in the earthworm Eisenia andrei. Chemosphere 80:1036–1043

    Article  Google Scholar 

  • Ebenso IE, Ologhobo AD (2008) Edible land snail shell thickness as bioindicator of environmental lead metal pollution. Pollut Res India 27:75–76

    Google Scholar 

  • Edwards CA (2002) Assessing the effects of environmental pollutants on soil organisms, communities, processes and ecosystems. Eur J Soil Biol 38:225–231

    Article  CAS  Google Scholar 

  • El-Hadef El-Okki M, Sahli L, Bentellis A, Azzoug R, Laing GD, Rached O (2016) Assessment of metal contamination in soil banks of the Rhumel wadi (Northeast Algeria). Toxicol Environ Chem 98:53–63

    Article  CAS  Google Scholar 

  • Emmanuel S, Erel Y (2002) Implications from concentrations and isotopic data for Pb partitioning processes in soils. Geochimica et Cosmochimica Acta 66(14):2517–2527

    Article  CAS  Google Scholar 

  • Fiorino E, Sehonova P, Plhalova L, Blahova J, Svobodova Z, Faggio C (2018) Effects of glyphosate on early life stages: comparison between Cyprinus carpio and Danio rerio. Environ. Environ Sci Pollut Res 25(9):8542–8854

    Article  CAS  Google Scholar 

  • Fritsch C, Coeurdassier M, Gimbert F, Crini N, Scheifler R, Gomot- De Vaufleury A (2011) Investigations of responses to metal pollution in land snail populations (Cantareus aspersus and Cepaea nemoralis) from a smelter-impacted area. Ecotoxicology 20:739–759

    Article  CAS  Google Scholar 

  • Gavrilescu M (2010) Environmental biotechnology: achievements, opportunities and challenges. Dyn Biochem Process Biotechnol Mol Biol 4:1–36

    Google Scholar 

  • Gimbert F, Gomot- De Vaufleury A, Douay F, Scheifler R, Coeurdassier M, Badot P-M (2006) Modelling chronic exposure to contaminated soil: a toxicokinetic approach with the terrestrial snail Helix aspersa. Environ Int 32:866–875

    Article  CAS  Google Scholar 

  • Gimbert F, Gomot-De Vaufleury A, Douay F, Coeurdassier M, Scheifler R, Badot P-M (2008) Long-term responses of snails exposed to cadmium-contaminated soils in a partial life-cycle experiment. Ecotoxicol Environ Saf 70:138–146

    Article  CAS  Google Scholar 

  • Gomes SI, Gonçalves MF, Bicho RC, Roca CP, Soares AM, Scott-Fordsmand JJ, Amorim MJ (2018) High-throughput gene expression in soil invertebrate embryos–Mechanisms of Cd toxicity in Enchytraeus crypticus. Chemosphere 21:87–94

    Article  Google Scholar 

  • Gomot- De Vaufleury A, Gomot L, Boukraa S, Bruckert S (1989) Influence of soil on the growth of the land snail Helix aspersa. An experimental study of the absorption route for the stimulating factors. J. Molluscan Stud 55:1–7

    Article  Google Scholar 

  • Gomot- De Vaufleury A (1997) Dose-dependent effects of cadmium on the growth of snails in toxicity bioassays. Arch Environ Contam Toxicol 33:209–216

    Article  Google Scholar 

  • Gomot-De Vaufleury A (2000) Standardized growth toxicity testing (Cu, Zn, Pb, and Pentachlorophenol) with Helix aspersa. Ecotoxicol Environ Saf 46:41–50

    Article  Google Scholar 

  • Gomot- De Vaufleury A, Pihan F (2002) Methods for toxicity assessment of contaminated soil by oral or dermal uptake in land snails: metal bioavailability and bioaccumulation. Environ Toxicol Chem Int J 21:820–827

    Article  CAS  Google Scholar 

  • Gomot-De Vaufleury A, Cœurdassier M, Pandard P, Scheifler R, Lovy C, Crini N, Badot P-M (2006) How terrestrial snails can be used in risk assessment of soils. Environ Toxicol Chem 25:797–806

    Article  Google Scholar 

  • Gomot-De Vaufleury A (2015) Landsnail for ecotoxicological assessment of chemicals and soil contamination—ecotoxicological assessment of chemicals and contaminated soils using the terrestrial snail, Helix aspersa, at various stage of its life cycle: a review, In: Armon, RH, Hänninen, O (eds), Environmental Indicators. Springer Netherlands, Dordrecht, pp 365–391

  • Gonçalves MF, Bicho RC, Rêma A, Soares AM, Faustino AM, Amorim MJ (2015) Development of an embryotoxicity test for Enchytraeus crypticus–The effect of Cd. Chemosphere 139:386–392

    Article  Google Scholar 

  • Hajeb P, Sloth JJ, Shakibazadeh S, Mahyudin NA, Afsah-Hejri L (2014) Toxic elements in food: occurrence, binding, and reduction approaches. Compr Rev Food Sci Food Saf 13:457–472

    Article  CAS  Google Scholar 

  • Hamers T, van den Berg JHJ, van Gestel CAM, van Schooten FJ, Murk AJ (2006) Risk assessment of metals and organic pollutants for herbivorous and carnivorous small mammal food chains in a polluted floodplain (Biesbosch, The Netherlands). Environ Pollut 144: 581–595

  • Hindersmann I, Mansfeldt T (2014) Trace element solubility in a multimetal-contaminated soil as affected by redox conditions. Water Air Soil Pollut 225(10):2158–2178

    Article  Google Scholar 

  • Hodson ME (2013) Effects of heavy metals and metalloids on soil organisms, In: Alloway, BJ (ed.), Heavy metals in soils: trace metals and metalloids in soils and their bioavailability, environmental pollution. Springer Netherlands, Dordrecht. pp. 141–160

  • Hooda PS, Alloway BJ (1998) Cadmium and lead sorption behaviour of selected English and Indian soils. Geoderma 84(1–3):121–134

    Article  CAS  Google Scholar 

  • Ireland MP (1991) The effect of dietary calcium on growth, shell thickness and tissue calcium distribution in the snail Achatina fulica. Comp. Biochem. Physiol. A Physiol 98:111–116

    Article  Google Scholar 

  • ISO (2006) ISO 15952:2006 Soil quality-Effects of pollutants on juvenile land snails (Helicidae)-Determination of the effects on growth by soil contamination. International Organization for Standardization, Geneva. https://www.iso.org/standard/37667.html

  • Janssen RP, Peijnenburg WJ, Posthuma L, Van Den Hoop MA (1997) Equilibrium partitioning of heavy metals in Dutch field soils. I. Relationship between metal partition coefficients and soil characteristics. Environ Toxicol Chem 16(12):2470–2478

    Article  CAS  Google Scholar 

  • Kabata-Pendias A (2004) Soil-plant transfer of trace elements: an environmental issue. Geoderma. 122:143–149

    Article  CAS  Google Scholar 

  • Kelly T, Matos G, DiFrancesco C, Porter K, Berry C, Crane M, Goonan T, Sznopek J (2005) Historical statistics for mineral and material commodities in the United States. US Geol Survey Data series 140:01–006

    Google Scholar 

  • Kiewiet AT, Ma W (1991) Effect of pH and calcium on lead and cadmium uptake by earthworms in water. Ecotoxicol Environ Saf 21:32–37

    Article  CAS  Google Scholar 

  • Kim R-Y, Yoon J-K, Kim T-S, Yang JE, Owens G, Kim K-R (2015) Bioavailability of heavy metals in soils: definitions and practical implementation-a critical review. Environ Geochem Health 37:1041–1061

    Article  CAS  Google Scholar 

  • Langdon CJ, Hodson ME, Arnold RE, Black S (2005) Survival, Pb-uptake and behaviour of three species of earthworm in Pb treated soils determined using an OECD-style toxicity test and a soil avoidance test. Environ Pollut 138:368–375

    Article  CAS  Google Scholar 

  • Lanno RP, Oorts K, Smolders E, Albanese K, Chowdhury MJ (2019) Effects of soil properties on the toxicity and bioaccumulation of lead in soil invertebrates. Environ Toxicol Chem 38:1486–1494

    Article  CAS  Google Scholar 

  • Laskowski R, Hopkin SP (1996a) Accumulation of Zn, Cu, Pb and Cd in the garden snail (Helix aspersa): implications for predators. Environ Pollut 91:289–297

    Article  CAS  Google Scholar 

  • Laskowski R, Hopkin SP (1996b) Effect of Zn, Cu, Pb, and Cd on fitness in snails (Helix aspersa). Ecotoxicol Environ Saf 34:59–69

    Article  CAS  Google Scholar 

  • Locher R, Baur B (2000) Sperm delivery and egg production of the simultaneously hermaphroditic land snail Arianta arbustorum exposed to an increased sperm competition risk. Invertebr Reprod Dev 38:53–60

    Article  Google Scholar 

  • Lock K, Janssen CR (2001) Cadmium toxicity for terrestrial invertebrates: taking soil parameters affecting bioavailability into account. Ecotoxicology 10:315–322

    Article  CAS  Google Scholar 

  • Lodi M, Koene JM (2015) The love-darts of land snails: integrating physiology, morphology and behaviour. JMolluscan Stud 82:1–10

    Google Scholar 

  • Louzon M, Pelfrêne A, Pauget B, Gimbert F, Morin-Crini N, Douay F, Gomot-De Vaufleury A (2020a) Bioaccessibility of metal(loid)s in soils to humans and their bioavailability to snails: A way to associate human health and ecotoxicological risk assessment? J Hazard Mater 384:121432

    Article  CAS  Google Scholar 

  • Louzon M, Pauget B, Gimbert F, Morin-Crini N, Gomot-De Vaufleury A (2020b) Ex situ environmental risk assessment of polluted soils using threshold guide values for the land snail Cantareus aspersus. Sci. Total Environ 721:137789

  • Mani D, Kumar C (2014) Biotechnological advances in bioremediation of heavy metals contaminated ecosystems: an overview with special reference to phytoremediation. Int J Environ Sci Technol 11:843–872

    Article  CAS  Google Scholar 

  • Marín A, Andrades M, Iñigo V, Jiménez‐Ballesta R (2016) Lead and cadmium in soils of La Rioja vineyards, Spain. Land Degrad Dev 27:1286–1294

    Article  Google Scholar 

  • Masindi V, Muedi KL (2018) Environmental contamination by heavy metals. Heavy Met 10:115–132

    Google Scholar 

  • Massaro EJ (1997) Handbook of human toxicology. CRC press, Boca Raton, p 1111

    Book  Google Scholar 

  • McGeer JC, Brix KV, Skeaff JM, DeForest DK, Brigham SI, Adams WJ, Green A (2003) Inverse relationship between bioconcentration factor and exposure concentration for metals: implications for hazard assessment of metals in the aquatic environment. Environ Toxicol Chem 22:1017–1037

    Article  CAS  Google Scholar 

  • Menta C, Parisi V (2001) Metal concentrations in Helix pomatia, Helix aspersa and Arion rufus: a comparative study. Environ Pollut 115:205–208

    Article  CAS  Google Scholar 

  • Merkel B, Sperling B (1998) Hydrogeochemische Stoffsysteme II. Schriftenreihe des Deutschen Verbandes für Wasserwirtschaft und Kulturbau e.V. (DVWK); 117, Deutscher Verband für Wasserwirtschaft und Kulturbau e. V. (DVWK), Bonn

  • Muller OF (1774) Vermium terrestrium et fluviatilium seu animalium infusorium, helminthicorum et testaceorum, non marinorum, succinda historia, vol. II.

  • Nahmani J, Hodson ME, Devin S, Vijver MG (2009) Uptake kinetics of metals by the earthworm Eisenia fetida exposed to field-contaminated soils. Environ Pollut 157:2622–2628

    Article  CAS  Google Scholar 

  • Notten MJM, Oosthoek AJP, Rozema J, Aerts R (2005) Heavy metal concentrations in a soil-plant-snail food chain along a terrestrial soil pollution gradient. Environ Pollut 138:178–190

    Article  CAS  Google Scholar 

  • Pan J, Plant JA, Voulvoulis N, Oates CJ, Ihlenfeld C (2010) Cadmium levels in Europe: implications for human health. Environ Geochem Health 32:1–12

    Article  CAS  Google Scholar 

  • Pardo MT (2000) Sorption of lead, copper, zinc, and cadmium by soils: effect of nitriloacetic acid on metal retention. Commun Soil Sci Plant Anal 31:31–40

    Article  CAS  Google Scholar 

  • Pauget B, Gimbert F, Coeurdassier M, Scheifler R, Gomot-De Vaufleury A (2011) Use of chemical methods to assess Cd and Pb bioavailability to the snail Cantareus aspersus: a first attempt taking into account soil characteristics. J Hazard Mater 192:1804–1811

    Article  CAS  Google Scholar 

  • Pauget B, Gimbert F, Scheifler R, Coeurdassier M, Gomot-De Vaufleury A (2012) Soil parameters are key factors to predict metal bioavailability to snails based on chemical extractant data. Sci Total Environ 431:413–425

    Article  CAS  Google Scholar 

  • Pauget B, Gimbert F, Coeurdassier M, Crini N, Pérès G, Faure O, Douay F, Richard A, Grand C, Gomot-De Vaufleury A (2013) Assessing the in situ bioavailability of trace elements to snails using accumulation kinetics. Ecol Indic 34:126–135

    Article  CAS  Google Scholar 

  • Prasad MNV, Sajwan KS, Naidu R (2006) Trace elements in the environment: Biogeochemistry, biotechnology, and bioremediation. CRC Press. Taylor and Francis Group, Boca Raton

    Google Scholar 

  • Regoli F, Gorbi S, Fattorini D, Tedesco S, Notti A, Machella N, Bocchetti R, Benedetti M, Piva F (2006) Use of the land snail Helix aspersa as sentinel organism for monitoring ecotoxicologic effects of urban pollution: an integrated approach. Environ Health Perspect 114:63–69

    Article  CAS  Google Scholar 

  • Rieuwerts J (2017) The elements of environmental pollution. Routledge, Abingdon, p 20–33

    Book  Google Scholar 

  • Romero-Freire A, Peinado FM, Van Gestel CAM (2015) Effect of soil properties on the toxicity of Pb: assessment of the appropriateness of guideline values. J. Hazard. Mater 289:46–53

    Article  CAS  Google Scholar 

  • Russell LK, DeHaven JI, Botts RP (1981) Toxic effects of cadmium on the garden snail (Helix aspersa). Bull Environ Contam Toxicol 26:634–640

    Article  CAS  Google Scholar 

  • Sahli L, Afri-Mehennaoui F-Z, El Hadef El-Okki M, Férard JF, Mehennaoui S (2012) Assessment of sediment quality and pore water ecotoxicity in Kebir Rhumel basin (NE-Algeria): a combined approach. Water Sci Technol 65:393–401

    Article  CAS  Google Scholar 

  • Sandifer RD, Hopkin SP (1996) Effects of pH on the toxicity of cadmium, copper, lead and zinc to Folsomia candida Willem, 1902 (Collembola) in a standard laboratory test system. Chemosphere 33:2475–2486

    Article  CAS  Google Scholar 

  • Sauvé S, Hendershot W, Allen HE (2000) Solid-solution partitioning of metals in contaminated soils: dependence on pH, total metal burden, and organic matter. Environ Sci Technol 34:1125–1131

    Article  Google Scholar 

  • Savorelli F, Manfra L, Croppo M, Tornambè A, Palazzi D, Canepa S, Trentini PL, Cicero AM, Faggio C (2017) Fitness evaluation of Ruditapes philippinarum exposed to Ni. Biol Trace Elem Res 177:384–393

    Article  CAS  Google Scholar 

  • Scheifler R, Gomot-De Vaufleury A, Coeurdassier M, Crini N, Badot P-M (2006) Transfer of Cd, Cu, Ni, Pb, and Zn in a soil-plant-invertebrate food chain: a microcosm study. Environ Toxicol Chem Int J 25:815–822

    Article  CAS  Google Scholar 

  • Scheifler R, Gomot-de Vaufleury A, Toussaint M-L, Badot P-M (2002) Transfer and effects of cadmium in an experimental food chain involving the snail Helix aspersa and the predatory carabid beetle Chrysocarabus splendens. Chemosphere 48:571–579

    Article  CAS  Google Scholar 

  • Schoenmakers TJ, Klaren PH, Flik G, Lock RA, Pang PK, SEW Bonga (1992) Actions of cadmium on basolateral plasma membrane proteins involved in calcium uptake by fish intestine. J Membr Biol 127:161–172

    Article  CAS  Google Scholar 

  • Sharpley A (2007) Soil and water contamination: From molecular to catchment scale. J Environ Qual 36:607–608

    Google Scholar 

  • Sivakumar S (2015) Effects of metals on earthworm life cycles: a review. Environ Monit Assess. 187:530–546

    Article  CAS  Google Scholar 

  • Smolders E, Oorts K, Van Sprang P, Schoeters I, Janssen CR, McGrath SP, McLaughlin MJ (2009) Toxicity of trace metals in soil as affected by soil type and aging after contamination: using calibrated bioavailability models to set ecological soil standards. Environ Toxicol Chem Int J 28:1633–1642

    Article  CAS  Google Scholar 

  • Son J, Ryoo MI, Jung J, Cho K (2007) Effects of cadmium, mercury and lead on the survival and instantaneous rate of increase of Paronychiurus kimi (Lee)(Collembola). Appl Soil Ecol 35:404–411

    Article  Google Scholar 

  • Sprynskyy M, Kowalkowski T, Tutu H, Cozmuta LM, Cukrowska EM, Buszewski B (2011) The adsorption properties of agricultural and forest soils towards heavy metal ions (Ni, Cu, Zn, and Cd). Soil Sediment Contam 20:12–29

    Article  CAS  Google Scholar 

  • Sunila I, Lindström R (1985) Survival, growth and shell deformities of copper-and cadmium-exposed mussels (Mytilus edulis L.) in brackish water. Estuar Coast Shelf Sci 21(4):555–565

    Article  CAS  Google Scholar 

  • Swaileh KM, Ezzughayyar A (2000) Effects of dietary Cd and Cu on feeding and growth rates of the land snail Helix engaddensis. Ecotoxicol Environ Saf 47:253–260

  • Thornton I (1986) Geochemistry of cadmium. In Cadmium in the environment. Experientia supplementum vol. 50. H Mislin and O Ravera (eds). Birkhäuser, Basel, Switzerland, pp 7–12

  • Van Gestel CAM, Rademaker MCJ, Van Straalen NM (1995) Capacity controlling parameters and their impact on metal toxicity in soil invertebrates, In: Salomons, W, Stigliani, WM (eds), Biogeodynamics of pollutants in soils and sediments: risk assessment of delayed and non-linear responses, environmental science. Springer, Berlin, Heidelberg, pp 171–192

  • Van Gestel CAM, Mol S (2003) The influence of soil characteristics on cadmium toxicity for Folsomia candida (Collembola: Isotomidae). Pedobiologia 47:387–395

    Article  Google Scholar 

  • Van Gestel CAM (2012) Soil ecotoxicology: state of the art and future directions. ZooKeys 176: 275–296

  • Young SD (2013) Chemistry of heavy metals and metalloids in soils, In: Alloway B (eds) Heavy metals in soils. Environmental Pollution, Springer, Dordrecht 20: 51–95

  • Yu R, He L, Cai R, Li B, Li Z, Yang K (2017) Heavy metal pollution and health risk in China. Glob Health J 1:47–55

    Article  Google Scholar 

  • Zhang L, Van Gestel CAM (2017) Toxicokinetics and toxicodynamics of lead in the soil invertebrate Enchytraeus crypticus. Environ Pollut 225:534–541

    Article  CAS  Google Scholar 

  • Zhang L, Verweij RA, Van Gestel CAM (2019) Effect of soil properties on Pb bioavailability and toxicity to the soil invertebrate Enchytraeus crypticus. Chemosphere 217:9–17

    Article  CAS  Google Scholar 

Download references

Acknowledgements

To The Laboratory of Biology and Environment, University Mentouri Brothers-Constantine1, Constantine, Algeria. And to the Department of Ecological Science, Faculty of Science, Vrije Universiteit. Amsterdam, The Netherlands where the experimental work has been done.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed substantially to this work.’

Corresponding author

Correspondence to Aboubakre Seddik Sahraoui.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants, Clinical Trials Registration or Plant Reproducibility performed by any of the authors. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed by the authors.

Informed consent

All the related authors have consented to participate and publish this article.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahraoui, A.S., Verweij, R.A., Belhiouani, H. et al. Dose-dependent effects of lead and cadmium and the influence of soil properties on their uptake by Helix aspersa: an ecotoxicity test approach. Ecotoxicology 30, 331–342 (2021). https://doi.org/10.1007/s10646-020-02331-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-020-02331-z

Keywords

Navigation