Skip to main content
Log in

Prediction of Retention Time of Morphine and Its Derivatives Without Using Computer-Encoded Complex Descriptors

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

A novel approach is introduced for reliable prediction of the retention time of morphine and its derivatives, which have widespread use in medical and pharmaceutical applications. A core correlation is introduced based on the number of carbon and hydrogen atoms as well as the number of ester, noncyclic ether, and ketone functional groups from experimental data of 42 compounds. An improved correlation is developed to increase the reliability of the core correlation by inserting a correcting function. The reliability of two correlations is tested and compared with the best available complex method based on a backpropagation artificial neural network (BP-ANN) for further 15 compounds. The values of root mean squared error (RMSE) of core and improved correlations for the test set are 0.5681 and 0.4832 min, which are lower than those reported by BP-ANN (0.6052 min). Cross-validations of the improved correlation corresponding to the coefficients of determination for leave-one-out (Q2LOO) and the fivefold cross-validation (Q25CV) are close to its the coefficient of determination (R2 = 0.982), which confirms goodness-of-fit, goodness-of-prediction, accuracy, and precision of the novel model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Serafini RA, Zachariou V (2019) J Clin Investig 129:1–3

    Article  Google Scholar 

  2. Brook K, Bennett J, Desai SP (2017) J Anesth History 3:50–55

    Article  Google Scholar 

  3. Lightbourn A, Zhu Z-P, Goodman CB (2020) Glob J Med Res 20:1–25

    Google Scholar 

  4. Zapadka M, Kaczmarek M, Kupcewicz B, Dekowski P, Walkowiak A, Kokotkiewicz A, Łuczkiewicz M, Buciński A (2019) J Pharm Biomed Anal 164:681–689

    Article  CAS  PubMed  Google Scholar 

  5. Agrawal JP (2010) High energy materials: propellants, explosives and pyrotechnics. Wiley, Weinheim

    Book  Google Scholar 

  6. keshavarz MH (2018) Liquid fuels as jet fuels and propellants: a review of their productions and applications. Nova Science Publishers, Inc., New York

    Google Scholar 

  7. Keshavarz MH (2018) Combustible organic materials: determination and prediction of combustion properties. Walter de Gruyter GmbH & Co KG, Berlin

    Book  Google Scholar 

  8. Keshavarz MH, Klapötke TM (2017a) Energetic compounds: methods for prediction of their performance. Walter de Gruyter GmbH & Co KG, Berlin

    Book  Google Scholar 

  9. Keshavarz MH, Klapötke TM (2017b) The properties of energetic materials: sensitivity physical and thermodynamic properties. Walter de Gruyter GmbH & Co KG, Berlin

    Book  Google Scholar 

  10. Klapötke TM (2018) Energetic materials encyclopedia. Walter de Gruyter GmbH & Co KG, Berlin

    Book  Google Scholar 

  11. Klapötke TM (2019) Chemistry of high-energy materials. Walter de Gruyter GmbH & Co KG, Berlin

    Book  Google Scholar 

  12. Mozafari Z, Chamjangali MA, Arashi M (2020) Chemometrics and Intelligent Laboratory Systems:103998.

  13. Hadni H, Elhallaoui M (2020) Heliyon 6:e03580

    Article  PubMed  PubMed Central  Google Scholar 

  14. Manouchehrizadeh E, Mostoufi A, Tahanpesar E (2019) Fereidoonnezhad MJCb, chemistry. Comput Biol Chem 80:463–471

    Article  CAS  PubMed  Google Scholar 

  15. Bahmani A, Tanzadehpanah H, Hosseinpour Moghadam N, Saidijam M (2020) Mol Divers:1–17.

  16. Jiang J, Duan W, Wei Q, Zhao X, Ni L, Pan Y, Shu C-M (2020) J Mol Liq:112471.

  17. Keshavarz MH, Pouretedal HR, Saberi E (2017) Zeitschrift für anorganische und allgemeine Chemie 643:171–179

    Article  CAS  Google Scholar 

  18. Keshavarz MH, Pouretedal HR, Saberi E (2018) Process Saf Environ Prot 116:333–339

    Article  CAS  Google Scholar 

  19. Keshavarz MH, Pouretedal HR, Saberi E (2016) J Mol Liq 216:732–737

    Article  CAS  Google Scholar 

  20. Rahimi R, Keshavarz MH, Akbarzadeh AR (2016) Cent Eur J Energ Mater 13:73–101

    Article  CAS  Google Scholar 

  21. Keshavarz M, Akbarzadeh A (2019) SAR QSAR Environ Res 30:347–361

    Article  CAS  PubMed  Google Scholar 

  22. Jafari M, Keshavarz MH, Salek H (2019) Ecotoxicol Environ Saf 182:109429

    Article  CAS  PubMed  Google Scholar 

  23. Turaci MÖ (2020) J Mol Struct 1207:127766

    Article  CAS  Google Scholar 

  24. Amos RI, Haddad PR, Szucs R, Dolan JW, Pohl CA (2018) TrAC, Trends Anal Chem 105:352–359

    Article  CAS  Google Scholar 

  25. Bahmani A, Saaidpour S, Rostami A (2017) Chromatographia 80:629–636

    Article  CAS  Google Scholar 

  26. Ronco NR, Menestrina F, Romero LM, Castells CB (2019) J Chromatogr A 1584:179–186

    Article  CAS  PubMed  Google Scholar 

  27. Passos H, Dinis TB, Capela EV, Quental MV, Gomes J, Resende J, Madeira PP, Freire MG, Coutinho JA (2018) Phys Chem Chem Phys 20:8411–8422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lenca N, Atapattu SN, Poole CF (2017) J Chromatogr A 1526:13–22

    Article  CAS  PubMed  Google Scholar 

  29. Hosaka T, Imai T, Wzorek A, Marcinkowska M, Kolbus A, Kitagawa O, Soloshonok VA, Klika KD (2019) Amino Acids 51:283–294

    Article  CAS  PubMed  Google Scholar 

  30. Riahi-Zanjani B, Balali-Mood M, Es’haghi Z, Asoodeh A, Ghorani-Azam A (2019) J Mol Model 25:54

    Article  PubMed  CAS  Google Scholar 

  31. Rong Y, Meng Z, Li J, Zhu X, Gan H, Gu R, Wu Z, Sun W, Liu T, Zheng Y (2018) J Pharm Biomed Anal 154:444–453

    Article  CAS  PubMed  Google Scholar 

  32. Zhang X-x (2017) Yu H, Wang G. J Liq Chromatogr Relat Technol 40:671–676

    Article  CAS  Google Scholar 

  33. Verpoorte R, Svendsen AB (1984) Chromatography of alkaloids. Part B. gas-liquid chromatography and high-performance liquid chromatography (J Chromatogr Library). Elsevier, Amsterdam, pp 132–133

    Google Scholar 

  34. Golbraikh A, Tropsha A (2002) J Mol Graph Model 20:269–276

    Article  CAS  PubMed  Google Scholar 

  35. Papa E, Kovarich S, Gramatica P (2009) QSAR Comb Sci 28:790–796

    Article  CAS  Google Scholar 

  36. Roy K, Mitra I (2011) Comb Chem High Throughput Screen 14:450–474

    Article  CAS  PubMed  Google Scholar 

  37. Rücker C, Rücker G, Meringer M (2007) J Chem Inf Model 47:2345–2357

    Article  PubMed  CAS  Google Scholar 

  38. Gramatica P, Chirico N, Papa E, Cassani S, Kovarich S (2013) J Comput Chem 34:2121–2132

    Article  CAS  Google Scholar 

  39. Gramatica P, Pilutti P, Papa E (2007) SAR QSAR Environ Res 18:169–178

    Article  CAS  PubMed  Google Scholar 

  40. Mitra I, Saha A, Roy K (2010) Mol Simul 36:1067–1079

    Article  CAS  Google Scholar 

  41. Roy K, Kar S, Das RN (2015) A primer on QSAR/QSPR Modeling: fundamental concepts. Springer, Berlin

    Book  Google Scholar 

  42. Gramatica P (2013) On the development and validation of QSAR Models. Computational toxicology. Springer, Berlin, pp 499–526

    Chapter  Google Scholar 

  43. Gramatica P (2020) Int J Quant Struct-Prop Relat (IJQSPR) 5:1–37

    Google Scholar 

  44. Gramatica P, Cassani S, Chirico N (2014) J Comput Chem 35:1036–1044. https://www.qsar.it.

  45. Keshavarz MH, Motamedoshariati H, Moghayadnia R, Ghanbarzadeh M, Azarniamehraban J (2013) Propellants Explos Pyrotech 38:95–102

    Article  CAS  Google Scholar 

  46. Keshavarz MH, Soury H, Motamedoshariati H, Dashtizadeh A (2015) Struct Chem 26:455–466

    Article  CAS  Google Scholar 

  47. Keshavarz MH (2010) J Hazard Mater 177:648–659

    Article  CAS  PubMed  Google Scholar 

  48. Keshavarz MH, Bashavard B, Goshadro A, Dehghan Z, Jafari M (2015) J Therm Anal Calorim 120:1941–1951

    Article  CAS  Google Scholar 

  49. Keshavarz MH (2008) J Hazard Mater 151:499–506

    Article  CAS  PubMed  Google Scholar 

  50. Keshavarz MH, Ghani K, Asgari A (2015) J Therm Anal Calorim 121:675–681

    Article  CAS  Google Scholar 

  51. Palm WJ III (2011) Introduction to MATLAB for engineers. McGraw-Hill, New York

    Google Scholar 

  52. Kamalvand M, Keshavarz MH, Jafari M (2015) Propellants Explos Pyrotech 40:551–557

    Article  CAS  Google Scholar 

  53. Leach AR, Gillet VJ (2007) An introduction to chemoinformatics. Springer, The Netherlands

    Book  Google Scholar 

  54. Tropsha A (2010) Mol Inform 29:476–488

    Article  CAS  PubMed  Google Scholar 

  55. Kutner MH, Nachtsheim C, Neter J (2004) Applied linear regression models. McGraw-Hill/Irwin, New York

    Google Scholar 

  56. Puzyn T, Leszczynski J, Cronin MT (2010) Recent advances in QSAR studies: methods and applications. Springer Science & Business Media, Berlin

    Book  Google Scholar 

  57. Meloun M, Militký J, Hill M, Brereton RG (2002) Analyst 127:433–450

    Article  CAS  PubMed  Google Scholar 

  58. Meloun M, Bordovská S, Kupka K (2010) J Math Chem 47:891–909

    Article  CAS  Google Scholar 

Download references

Acknowledgement

We would like to thank the Malek-ashtar University of Technology for supporting this work. We want also to thank Professor Dr. Paola Gramatica for providing QSARINS version 2.2.4.

Funding

This study was self-funded, no fund is received.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Hossein Keshavarz.

Ethics declarations

Conflict of Interest

No conflict of interest of any kind.

Research Involving Human or Animal Participants

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 357 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keshavarz, M.H., Shirazi, Z. & Rezayat, M.A. Prediction of Retention Time of Morphine and Its Derivatives Without Using Computer-Encoded Complex Descriptors. Chromatographia 84, 87–96 (2021). https://doi.org/10.1007/s10337-020-03975-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-020-03975-z

Keywords

Navigation