Skip to main content

Advertisement

Log in

Adverse effects of LPS on membrane proteins in lactating bovine mammary epithelial cells

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Mastitis causes a decrease in milk yield and abnormalities in milk components from dairy cows. Escherichia coli and the E. coli lipopolysaccharide (LPS) cell wall component directly downregulate milk production in bovine mammary epithelial cells (BMECs). However, the detailed mechanism by which this occurs in BMECs remains unclear. Various membrane proteins, such as immune sensors (Toll-like receptors, TLR), nutrient transporters (glucose transporter and aquaporin), and tight junction proteins (claudin and occludin) are involved in the onset of mastitis or milk production in BMECs. In this study, we investigated the influence of LPS on membrane proteins using an in vitro culture model. This mastitis model demonstrated a loss of glucose transporter-1 and aquaporin-3 at lateral membranes and a decrease in milk production in response to LPS treatment. LPS disrupted the tight junction barrier and caused compositional changes in localization of claudin-3 and claudin-4, although tight junctions were maintained to separate the apical membrane domains and the basolateral membrane domains. LPS did not significantly affect the expression level and subcellular localization of epidermal growth factor receptor in lactating BMECs with no detectable changes in MEK1/2-ERK1/2 signaling. In contrast, NFκB was concurrently activated with temporal translocation of TLR-4 in the apical membranes, whereas TLR-2 was not significantly influenced by LPS treatment. These findings indicate the importance of investigating the subcellular localization of membrane proteins to understand the molecular mechanism of LPS in milk production in mastitis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AQP:

Aquaporin

BMEC:

Bovine mammary epithelial cell

BSA:

Bovine serum albumin

EGFR:

Epidermal growth factor receptor

FBS:

Fetal bovine serum

FITC:

Fluorescein isothiocyanate

GLUT1:

Glucose transporter-1

LPS:

Lipopolysaccharide

PBS-T:

PBS containing 0.05% Tween 20

STAT:

Signal transducer and activator of transcription

SDS:

Sodium dodecyl sulfate

TJ:

Tight junction

TLR:

Toll-like receptor

References

  • Abate W, Alghaithy AA, Parton J, Jones KP, Jackson SK (2010) Surfactant lipids regulate LPS-induced interleukin-8 production in A549 lung epithelial cells by inhibiting translocation of TLR4 into lipid raft domains. J Lipid Res 51:334–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adams KM, Lucas J, Kapur RP, Stevens AM (2007) LPS induces translocation of TLR4 in amniotic epithelium. Placenta 28:477–481

    Article  CAS  PubMed  Google Scholar 

  • Aderem A, Ulevitch RJ (2000) Toll-like receptors in the induction of the innate immune response. Nature 406:782–787

    Article  CAS  PubMed  Google Scholar 

  • Akira S, Takeda K, Kaisho T (2001) Toll-like receptors: Critical proteins linking innate and acquired immunity. Nat Immunol 2:675–680

    Article  CAS  PubMed  Google Scholar 

  • Anderson SM, Rudolph MC, McManaman JL, Neville MC (2007) Key stages in mammary gland development. Secretory activation in the mammary gland: It's not just about milk protein synthesis! Breast Cancer Res 9:204

  • Baumgartner HK, Rudolph MC, Ramanathan P, Burns V, Webb P, Bitler BG, Stein T, Kobayashi K, Neville MC (2017) Developmental expression of claudins in the mammary gland. J Mammary Gland Biol Neoplasia 22:141–157

    Article  PubMed  PubMed Central  Google Scholar 

  • Bouley R, Hawthorn G, Russo LM, Lin HY, Ausiello DA, Brown D (2006) Aquaporin 2 (AQP2) and vasopressin type 2 receptor (V2R) endocytosis in kidney epithelial cells: AQP2 is located in “endocytosis-resistant” membrane domains after vasopressin treatment. Biol Cell 98:215–232

    Article  CAS  PubMed  Google Scholar 

  • Camps M, Vilaro S, Testar X, Palacin M, Zorzano A (1994) High and polarized expression of GLUT1 glucose transporters in epithelial cells from mammary gland: Acute down-regulation of GLUT1 carriers by weaning. Endocrinology 134:924–934

    Article  CAS  PubMed  Google Scholar 

  • Cereijido M, Valdes J, Shoshani L, Contreras RG (1998) Role of tight junctions in establishing and maintaining cell polarity. Annu Rev Physiol 60:161–177

    Article  CAS  PubMed  Google Scholar 

  • Derakhshani H, Fehr KB, Sepehri S, Francoz D, De Buck J, Barkema HW, Plaizier JC, Khafipour E (2018) Invited review: Microbiota of the bovine udder: Contributing factors and potential implications for udder health and mastitis susceptibility. J Dairy Sci 101:10605–10625

    Article  CAS  PubMed  Google Scholar 

  • Dill R, Walker AM (2017) Role of prolactin in promotion of immune cell migration into the mammary gland. J Mammary Gland Biol Neoplasia 22:13–26

    Article  PubMed  Google Scholar 

  • Gross JJ, van Dorland HA, Wellnitz O, Bruckmaier RM (2015) Glucose transport and milk secretion during manipulated plasma insulin and glucose concentrations and during LPS-induced mastitis in dairy cows. J Anim Physiol Anim Nutr (Berl) 99:747–756

    Article  CAS  Google Scholar 

  • Halasa T, Huijps K, Osteras O, Hogeveen H (2007) Economic effects of bovine mastitis and mastitis management: A review. Vet Q 29:18–31

    Article  CAS  PubMed  Google Scholar 

  • Hughes K, Watson CJ (2018) The mammary microenvironment in mastitis in humans, dairy ruminants, rabbits and rodents: A one health focus. J Mammary Gland Biol Neoplasia 23:27–41

    Article  PubMed  PubMed Central  Google Scholar 

  • Ingman WV, Glynn DJ, Hutchinson MR (2014) Inflammatory mediators in mastitis and lactation insufficiency. J Mammary Gland Biol Neoplasia 19:161–167

    Article  PubMed  Google Scholar 

  • Jiang A, Zhang Y, Zhang X, Wu D, Liu Z, Li S, Liu X, Han Z, Wang C, Wang J, Wei Z, Guo C, Yang Z (2020) Morin alleviates LPS-induced mastitis by inhibiting the PI3K/AKT, MAPK, NF-kappaB and NLRP3 signaling pathway and protecting the integrity of blood-milk barrier. Int Immunopharmacol 78:105972

    Article  CAS  PubMed  Google Scholar 

  • Johnzon CF, Dahlberg J, Gustafson AM, Waern I, Moazzami AA, Ostensson K, Pejler G (2018) The effect of lipopolysaccharide-induced experimental bovine mastitis on clinical parameters, inflammatory markers, and the metabolome: A kinetic approach. Front Immunol 9:1487

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaihoko Y, Tsugami Y, Suzuki N, Suzuki T, Nishimura T, Kobayashi K (2020) Distinct expression patterns of aquaporin 3 and 5 in ductal and alveolar epithelial cells in mouse mammary glands before and after parturition. Cell Tissue Res 380:513–526

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi K, Miwa H, Yasui M (2010) Inflammatory mediators weaken the amniotic membrane barrier through disruption of tight junctions. J Physiol 588:4859–4869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi K, Oyama S, Numata A, Rahman MM, Kumura H (2013) Lipopolysaccharide disrupts the milk-blood barrier by modulating claudins in mammary alveolar tight junctions. PLoS ONE 8:e62187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi K, Oyama S, Uejyo T, Kuki C, Rahman MM, Kumura H (2013) Underlying mechanisms involved in the decrease of milk secretion during Escherichia coli endotoxin induced mastitis in lactating mice. Vet Res 44:119

    Article  PubMed  PubMed Central  Google Scholar 

  • Ling B, Alcorn J (2010) LPS-induced inflammation downregulates mammary gland glucose, fatty acid, and L-carnitine transporter expression at different lactation stages. Res Vet Sci 89:200–202

    Article  CAS  PubMed  Google Scholar 

  • Ludewig T (1996) Light and electron microscopic investigations of the blood-milk barrier in lactating cow udders. Anat Histol Embryol 25:121–126

    Article  CAS  PubMed  Google Scholar 

  • Matsunaga K, Tsugami Y, Kumai A, Suzuki T, Nishimura T, Kobayashi K (2018) IL-1beta directly inhibits milk lipid production in lactating mammary epithelial cells concurrently with enlargement of cytoplasmic lipid droplets. Exp Cell Res 370:365–372

    Article  CAS  PubMed  Google Scholar 

  • Miao J, Fa Y, Gu B, Zhu W, Zou S (2012) Taurine attenuates lipopolysaccharide-induced dysfunction in mouse mammary epithelial cells. Cytokine 59:35–40

    Article  CAS  PubMed  Google Scholar 

  • Mobasheri A, Kendall BH, Maxwell JE, Sawran AV, German AJ, Marples D, Luck MR, Royal MD (2011) Cellular localization of aquaporins along the secretory pathway of the lactating bovine mammary gland: An immunohistochemical study. Acta Histochem 113:137–149

    Article  CAS  PubMed  Google Scholar 

  • Nishiyama R, Sakaguchi T, Kinugasa T, Gu X, MacDermott RP, Podolsky DK, Reinecker HC (2001) Interleukin-2 receptor beta subunit-dependent and -independent regulation of intestinal epithelial tight junctions. J Biol Chem 276:35571–35580

    Article  CAS  PubMed  Google Scholar 

  • Pauloin A, Chanat E (2012) Prolactin and epidermal growth factor stimulate adipophilin synthesis in HC11 mouse mammary epithelial cells via the PI3-kinase/Akt/mTOR pathway. Biochim Biophys Acta 1823:987–996

    Article  CAS  PubMed  Google Scholar 

  • Riskin A, Nannegari VH, Mond Y (2008) Acute effectors of GLUT1 glucose transporter subcellular targeting in CIT3 mouse mammary epithelial cells. Pediatr Res 63:56–61

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez RA, Liang H, Chen LY, Plascencia-Villa G, Perry G (2019) Single-channel permeability and glycerol affinity of human aquaglyceroporin AQP3. Biochim Biophys Acta Biomembr 1861:768–775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seegers H, Fourichon C, Beaudeau F (2003) Production effects related to mastitis and mastitis economics in dairy cattle herds. Vet Res 34:475–491

    Article  PubMed  Google Scholar 

  • Shin K, Fogg VC, Margolis B (2006) Tight junctions and cell polarity. Annu Rev Cell Dev Biol 22:207–235

    Article  CAS  PubMed  Google Scholar 

  • Stewart TA, Hughes K, Hume DA, Davis FM (2019) Developmental stage-specific distribution of macrophages in mouse mammary gland. Front Cell Dev Biol 7:250

    Article  PubMed  PubMed Central  Google Scholar 

  • Truchet S, Ollivier-Bousquet M (2009) Mammary gland secretion: Hormonal coordination of endocytosis and exocytosis. Animal 3:1733–1742

    Article  CAS  PubMed  Google Scholar 

  • Tsugami Y, Suzuki N, Kawahara M, Suzuki T, Nishimura T, Kobayashi K (2020) Establishment of an in vitro culture model to study milk production and the blood-milk barrier with bovine mammary epithelial cells. Anim Sci J 91:e13355

    Article  CAS  PubMed  Google Scholar 

  • Tsugami Y, Suzuki N, Suzuki T, Nishimura T, Kobayashi K (2020) Regulatory effects of soy isoflavones and their metabolites in milk production via different ways in mice. J Agric Food Chem 68:5847–5853

    Article  CAS  PubMed  Google Scholar 

  • Wang D, Cai J, Zhao F, Liu J (2019) Low-quality rice straw forage increases the permeability of mammary epithelial tight junctions in lactating dairy cows. J Sci Food Agric 99:2037–2041

    Article  CAS  PubMed  Google Scholar 

  • Wang JH, Du JY, Wu YY, Chen MC, Huang CH, Shen HJ, Lee CF, Lin TH, Lee YJ (2014) Suppression of prolactin signaling by pyrrolidine dithiocarbamate is alleviated by N-acetylcysteine in mammary epithelial cells. Eur J Pharmacol 738:301–309

    Article  CAS  PubMed  Google Scholar 

  • Watson CJ, Burdon TG (1996) Prolactin signal transduction mechanisms in the mammary gland: The role of the Jak/Stat pathway. Rev Reprod 1:1–5

    Article  CAS  PubMed  Google Scholar 

  • Wu N, Zheng B, Shaywitz A, Dagon Y, Tower C, Bellinger G, Shen CH, Wen J, Asara J, McGraw TE, Kahn BB, Cantley LC (2013) AMPK-dependent degradation of TXNIP upon energy stress leads to enhanced glucose uptake via GLUT1. Mol Cell 49:1167–1175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yasui H, Kubota M, Iguchi K, Usui S, Kiho T, Hirano K (2008) Membrane trafficking of aquaporin 3 induced by epinephrine. Biochem Biophys Res Commun 373:613–617

    Article  CAS  PubMed  Google Scholar 

  • Zhao FQ, Keating AF (2007) Expression and regulation of glucose transporters in the bovine mammary gland. J Dairy Sci 90(Suppl 1):E76-86

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Kota Matsunaga, Naoki Omatsu, and Futa Shinagawa, Laboratory of Dairy Food Science, Research, Faculty of Agriculture, Hokkaido University, for their helpful research advice.

Funding

This work was supported by a Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (JSPS Kakenhi Grant Number 18H0232009 and JP19J10189).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken Kobayashi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All experiments were approved by the Animal Resource Committee of Hokkaido University (permission number: 15–0085).

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsugami, Y., Wakasa, H., Kawahara, M. et al. Adverse effects of LPS on membrane proteins in lactating bovine mammary epithelial cells. Cell Tissue Res 384, 435–448 (2021). https://doi.org/10.1007/s00441-020-03344-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-020-03344-0

Keywords

Navigation