Skip to main content
Log in

Examination of the Deactivation Cycle of NiAl- and NiMgAl-Hydrotalcite Derived Catalysts in the Dry Reforming of Methane

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The importance of the dry reforming of methane (DRM) lies in its capability to upgrade two greenhouse gases (CH4 and CO2) into synthesis gas (CO and H2), which is one of the main building block for synthesizing hydrocarbons. However, the Ni-based catalysts for DRM reaction usually have a major catalytic stability drawback. This works aims to assess the catalytic activity and stability of two Ni-based catalysts obtained from hydrotalcite (HT) precursors (i.e., NiAl-HT and NiMgAl-HT). The precursors, calcined (-c), reduced (-R) and spent samples were characterized by a series of techniques to gain insight into the influence of MgO over Ni-based catalyst in the drying reforming of methane. An in-situ ageing cycle process to speed up the deactivation of hydrotalcite-derived catalysts showed that the NiMgAl-HTc-R catalyst displayed a higher activity and resistance to coke formation (stability) than NiAl-HTc-R because of the introduction of Mg into hydrotalcite structure in the catalyst precursor. The presence of this element enhances several factors involved in the stability of Ni-based catalysts for the DRM process such as the reducibility and textural features of the catalysts, size and dispersion of Ni0 nanoparticles and also maintains a good compromise between the acid and base properties of the solid catalysts.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Scheme 1
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

HT:

Material type hydrotalcite

HTc:

After calcination

HTc-R:

After reduction

References

  1. Lavoie J-M (2014) Review on dry reforming of methane, a potentially more environmentally-friendly approach to the increasing natural gas exploitation. Front Chem 2:1–17

    Article  CAS  Google Scholar 

  2. le Saché E, Santos JL, Smith TJ, Centeno MA, Arellano-Garcia H, Odriozola JA, Reina TR (2018) Multicomponent Ni-CeO2 nanocatalysts for syngas production from CO2/CH4 mixtures. J CO2 Util 25:68–78

    Article  CAS  Google Scholar 

  3. Stroud T, Smith TJ, Le Saché E, Santos JL, Centeno MA, Arellano-Garcia H, Odriozola JA, Reina TR (2018) Chemical CO2 recycling via dry and bi reforming of methane using Ni-Sn/Al2O3 and Ni-Sn/CeO2-Al2O3 catalysts. Appl Catal B 224:125–135

    Article  CAS  Google Scholar 

  4. Pereñiguez R, Gonzalez-delaCruz VM, Caballero A, Holgado JP (2012) LaNiO3 as a precursor of Ni/La2O3 for CO2 reforming of CH4: effect of the presence of an amorphous NiO phase. Appl Catal B 123–124:324–332

    Article  CAS  Google Scholar 

  5. Hu J, Yu F, Lu Y (2012) Application of Fischer–Tropsch synthesis in biomass to liquid conversion. Catalysts 2:303–326

    Article  CAS  Google Scholar 

  6. Dębek R, Motak M, Grzybek T, Galvez M, Da Costa P (2017) A short review on the catalytic activity of hydrotalcite-derived materials for dry reforming of methane. Catalysts 7:32

    Article  CAS  Google Scholar 

  7. Halliche D, Cherifi O, Auroux A (2002) Etude De L’acidité De Zéolithes Y Modifiées Par Différents Cations. Application à la réaction de reformage sec du méthane. J Therm Anal Calorim 68:997–1002

    Article  CAS  Google Scholar 

  8. Gonzalez-Delacruz VM, Pereñiguez R, Ternero F, Holgado JP, Caballero A (2011) Modifying the size of nickel metallic particles by H2/CO treatment in Ni/ZrO2 methane dry reforming catalysts. ACS Catal 1:82–88

    Article  CAS  Google Scholar 

  9. Schwengber CA, da Silva FA, Schaffner RA, Fernandes-Machado NRC, Ferracin RJ, Bach VR, Alves HJ (2016) Methane dry reforming using Ni/Al2O3 catalysts: evaluation of the effects of temperature, space velocity and reaction time. J Environ Chem Eng 4:3688–3695

    Article  CAS  Google Scholar 

  10. Wang J, Fan G, Li F (2012) Carbon-supported Ni catalysts with enhanced metal dispersion and catalytic performance for hydrodechlorination of chlorobenzene. RSC Adv 2:9976

    Article  CAS  Google Scholar 

  11. Bradford MCJ, Vannice MA (1999) CO2 reforming of CH4. Catal Rev 41:1–42

    Article  CAS  Google Scholar 

  12. San-José-Alonso D, Juan-Juan J, Illán-Gómez MJ, Román-Martínez MC (2009) Ni, Co and bimetallic Ni–Co catalysts for the dry reforming of methane. Appl Catal A 371:54–59

    Article  CAS  Google Scholar 

  13. Zhang X, Zhang L, Peng H, You X, Peng C, Xu X, Liu W, Fang X, Wang Z, Zhang N, Wang X (2018) Nickel nanoparticles embedded in mesopores of AlSBA-15 with a perfect peasecod-like structure: a catalyst with superior sintering resistance and hydrothermal stability for methane dry reforming. Appl Catal B 224:488–499

    Article  CAS  Google Scholar 

  14. Liu W, Li L, Zhang X, Wang Z, Wang X, Peng H (2018) Design of Ni-ZrO2@SiO2 catalyst with ultra-high sintering and coking resistance for dry reforming of methane to prepare syngas. J CO2 Util 27:297–307

    Article  CAS  Google Scholar 

  15. Peng H, Zhang X, Han X, You X, Lin S, Chen H, Liu W, Wang X, Zhang N, Wang Z, Wu P, Zhu H, Dai S (2019) Catalysts in coronas: a surface spatial confinement strategy for high-performance catalysts in methane dry reforming. ACS Catal 9:9072–9080

    Article  CAS  Google Scholar 

  16. Nazemi MK, Sheibani S, Rashchi F, Gonzalez-DelaCruz VM, Caballero A (2012) Preparation of nanostructured nickel aluminate spinel powder from spent NiO/Al2O3 catalyst by mechano-chemical synthesis. Adv Powder Technol 23:833–838

    Article  CAS  Google Scholar 

  17. Cavani F, Trifirò F, Vaccari A (1991) Hydrotalcite-type anionic clays: preparation, properties and applications. Catal Today 11:173–301

    Article  CAS  Google Scholar 

  18. Roelofs JCAA, van Bokhoven JA, van Dillen AJ, Geus JW, de Jong KP (2002) The thermal decomposition of Mg–Al hydrotalcites: effects of interlayer anions and characteristics of the final structure. Chem Eur J 8:5571–5579

    Article  CAS  PubMed  Google Scholar 

  19. Dębek R, Motak M, Galvez ME, Da Costa P, Grzybek T (2017) Catalytic activity of hydrotalcite-derived catalysts in the dry reforming of methane: on the effect of Ce promotion and feed gas composition. React Kinet Mech Catal 121:185–208

    Article  CAS  Google Scholar 

  20. Usman M, Wan Daud WMA, Abbas HF (2015) Dry reforming of methane: influence of process parameters—a review. Renew Sustain Energy Rev 45:710–744

    Article  CAS  Google Scholar 

  21. Dębek R, Zubek K, Motak M, Galvez ME, Da Costa P, Grzybek T (2015) Ni–Al hydrotalcite-like material as the catalyst precursors for the dry reforming of methane at low temperature. C R Chim 18:1205–1210

    Article  CAS  Google Scholar 

  22. Abdelsadek Z, Sehailia M, Halliche D, Gonzalez-Delacruz VM, Holgado JP, Bachari K, Caballero A, Cherifi O (2016) In-situ hydrogasification/regeneration of NiAl-hydrotalcite derived catalyst in the reaction of CO 2 reforming of methane: a versatile approach to catalyst recycling. J CO2 Util 14:98–105

    Article  CAS  Google Scholar 

  23. Nawfal M, Gennequin C, Labaki M, Nsouli B, Aboukaïs A, Abi-Aad E (2015) Hydrogen production by methane steam reforming over Ru supported on Ni–Mg–Al mixed oxides prepared via hydrotalcite route. Int J Hydrog Energy 40:1269–1277

    Article  CAS  Google Scholar 

  24. Park JE, Koo KY, Jung UH, Lee JH, Roh H-S, Yoon WL (2015) Syngas production by combined steam and CO2 reforming of coke oven gas over highly sinter-stable La-promoted Ni/MgAl2O4 catalyst. Int J Hydrog Energy 40:13909–13917

    Article  CAS  Google Scholar 

  25. Tsyganok AI, Tsunoda T, Hamakawa S, Suzuki K, Takehira K, Hayakawa T (2003) Dry reforming of methane over catalysts derived from nickel-containing Mg–Al layered double hydroxides. J Catal 213:191–203

    Article  CAS  Google Scholar 

  26. González AR, Asencios YJO, Assaf EM, Assaf JM (2013) Dry reforming of methane on Ni–Mg–Al nano-spheroid oxide catalysts prepared by the sol–gel method from hydrotalcite-like precursors. Appl Surf Sci 280:876–887

    Article  CAS  Google Scholar 

  27. Düdder H, Kähler K, Krause B, Mette K, Kühl S, Behrens M, Scherer V, Muhler M (2014) The role of carbonaceous deposits in the activity and stability of Ni-based catalysts applied in the dry reforming of methane. Catal Sci Technol 4:3317–3328

    Article  Google Scholar 

  28. Abdelssadek Z, Bachari K, Saadi A, Cherifi O, Halliche D (2013) Study of the catalytic activity of calcined hydrotalcites for Friedel–Crafts reactions. Res Chem Intermed 41:1757–1764

    Article  CAS  Google Scholar 

  29. Monshi A, Foroughi MR, Monshi MR (2012) Modified Scherrer equation to estimate more accurately nano-crystallite size using XRD. World J Nano Sci Eng 02:154–160

    Article  CAS  Google Scholar 

  30. Muniz FTL, Miranda MAR, Morilla dos Santos C, Sasaki JM (2016) The Scherrer equation and the dynamical theory of X-ray diffraction. Acta Crystallogr Sect A Found Adv 72:385–390

    Article  CAS  Google Scholar 

  31. Casenave S, Martinez H, Guimon C, Auroux A, Hulea V, Cordoneanu A, Dumitriu E (2001) Acid–base properties of Mg–Ni–Al mixed oxides using LDH as precursors. Thermochim Acta 379:85–93

    Article  CAS  Google Scholar 

  32. Rivera JA, Fetter G, Jiménez Y, Xochipa MM, Bosch P (2007) Nickel distribution in (Ni, Mg)/Al-layered double hydroxides. Appl Catal A 316:207–211

    Article  CAS  Google Scholar 

  33. Rodrigues ACC, Henriques CA, Monteiro JLF (2003) Influence of Ni content on physico-chemical characteristics of Ni, Mg, Al-hydrotalcite like compounds. Mater Res 6:563–568

    Article  CAS  Google Scholar 

  34. Forano C, Hibino T, Leroux F, Taviot-Guého C (2006). Chapter 13.1: layered double hydroxides. In: Bergaya F, Theng BKG, Lagaly G (eds) Handbook of clay science, vol. 1. Elsevier, pp, 1021–1095

  35. Martínez-Lozano G, Hesiquio-Garduño M, Zeifert B, Salmones J (2007) Structural and microstructural characterization of Co-hydrotalcite-like compounds by X-ray diffraction. J Alloys Compd 434–435:816–819

    Article  CAS  Google Scholar 

  36. Reichle WT, Kang SY, Everhardt DS (1986) The nature of the thermal decomposition of a catalytically active anionic clay mineral. J Catal 101:352–359

    Article  CAS  Google Scholar 

  37. Rey F, Fornés V, Rojo JM (1992) Thermal decomposition of hydrotalcites. An infrared and nuclear magnetic resonance spectroscopic study. J Chem Soc Faraday Trans 88:2233–2238

    Article  CAS  Google Scholar 

  38. Fornasari G, Gazzano M, Matteuzzi D, Trifirò F, Vaccari A (1995) Structure and reactivity of high-surface-area Ni/Mg/Al mixed oxides. Appl Clay Sci 10:69–82

    Article  CAS  Google Scholar 

  39. Tichit D, Medina F, Coq B, Dutartre R (1997) Activation under oxidizing and reducing atmospheres of Ni-containing layered double hydroxides. Appl Catal A 159:241–258

    Article  CAS  Google Scholar 

  40. Li Y, Lu G, Ma J (2014) Highly active and stable nano NiO–MgO catalyst encapsulated by silica with a core–shell structure for CO2 methanation. RSC Adv 4:17420–17428

    Article  CAS  Google Scholar 

  41. Guil-Lopez R, Navarro RM, Ismail AA, Al-Sayari SA, Fierro JLG (2015) Influence of Ni environment on the reactivity of Ni–Mg–Al catalysts for the acetone steam reforming reaction. Int J Hydrog Energy 40:5289–5296

    Article  CAS  Google Scholar 

  42. Pérez-Ramı́rez J, Mul G, Moulijn JA (2001) In situ Fourier transform infrared and laser Raman spectroscopic study of the thermal decomposition of Co–Al and Ni–Al hydrotalcites. Vib Spectrosc 27:75–88

    Article  Google Scholar 

  43. Aramendía MA, Borau V, Jiménez C, Marinas JM, Ruiz JR, Urbano FJ (2002) Comparative study of Mg/M(III) (M=Al, Ga, In) layered double hydroxides obtained by coprecipitation and the sol–gel method. J Solid State Chem 168:156–161

    Article  CAS  Google Scholar 

  44. Wu G, Wang X, Chen B, Li J, Zhao N, Wei W, Sun Y (2007) Fluorine-modified mesoporous Mg–Al mixed oxides: Mild and stable base catalysts for O-methylation of phenol with dimethyl carbonate. Appl Catal A 329:106–111

    Article  CAS  Google Scholar 

  45. Crivello M, Pérez C, Fernández J, Eimer G, Herrero E, Casuscelli S, Rodríguez-Castellón E (2007) Synthesis and characterization of Cr/Cu/Mg mixed oxides obtained from hydrotalcite-type compounds and their application in the dehydrogenation of isoamylic alcohol. Appl Catal A 317:11–19

    Article  CAS  Google Scholar 

  46. de Sousa HSA, da Silva AN, Castro AJR, Campos A, Filho JM, Oliveira AC (2012) Mesoporous catalysts for dry reforming of methane: Correlation between structure and deactivation behaviour of Ni-containing catalysts. Int J Hydrog Energy 37:12281–12291

    Article  CAS  Google Scholar 

  47. Ferreira OP, Alves OL, Gouveia DX, Souza Filho AG, de Paiva JAC, Filho JM (2004) Thermal decomposition and structural reconstruction effect on Mg–Fe-based hydrotalcite compounds. J Solid State Chem 177:3058–3069

    Article  CAS  Google Scholar 

  48. Perez-Lopez OW, Senger A, Marcilio NR, Lansarin MA (2006) Effect of composition and thermal pretreatment on properties of Ni–Mg–Al catalysts for CO2 reforming of methane. Appl Catal A 303:234–244

    Article  CAS  Google Scholar 

  49. Guil-López R, La Parola V, Peña MA, Fierro JLG (2012) Evolution of the Ni-active centres into ex hydrotalcite oxide catalysts during the COx-free hydrogen production by methane decomposition. Int J Hydrog Energy 37:7042–7055

    Article  CAS  Google Scholar 

  50. González-Cortés SL, Aray I, Rodulfo-Baechler SMA, Lugo CA, Del Castillo HL, Loaiza-Gil A, Imbert FE, Figueroa H, Pernía W, Rodríguez A, Delgado O, Casanova R, Mendialdua J, Rueda F (2007) On the structure and surface properties of NiO/MgO–La2O3 catalyst: influence of the support composition and preparation method. J Mater Sci 42:6532–6540

    Article  CAS  Google Scholar 

  51. Tsyganok AI, Inaba M, Tsunoda T, Hamakawa S, Suzuki K, Hayakawa T (2003) Dry reforming of methane over supported noble metals: a novel approach to preparing catalysts. Catal Commun 4:493–498

    Article  CAS  Google Scholar 

  52. Huang YJ, Schwarz JA, Diehl JR, Baltrus JP (1988) Effect of catalyst preparation on catalytic activity: V. Chemical structures on nickel/alumina catalysts. Appl Catal 36:163–175

    Article  CAS  Google Scholar 

  53. Molina R, Poncelet G (1998) α-Alumina-supported nickel catalysts prepared from nickel acetylacetonate: a TPR study. J Catal 173:257–267

    Article  CAS  Google Scholar 

  54. Bhattacharyya A, Chang VW, Schumacher DJ (1998) CO2 reforming of methane to syngas: I: evaluation of hydrotalcite clay-derived catalysts. Appl Clay Sci 13:317–328

    Article  CAS  Google Scholar 

  55. Hou Z, Yashima T (2004) Meso-porous Ni/Mg/Al catalysts for methane reforming with CO2. Appl Catal A 261:205–209

    Article  CAS  Google Scholar 

  56. Dębek R, Motak M, Duraczyska D, Launay F, Galvez ME, Grzybek T, Da Costa P (2016) Methane dry reforming over hydrotalcite-derived Ni–Mg–Al mixed oxides: the influence of Ni content on catalytic activity, selectivity and stability. Catal Sci Technol 6:6705–6715

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the General Directorate for Scientific Research and Technological Development (DGRSDT) of the Algerian Ministry of Higher Education and the Spanish Ministry of Science for funding and technical support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zoulikha Abdelsadek or Sergio Gonzalez-Cortes.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdelsadek, Z., Holgado, J.P., Halliche, D. et al. Examination of the Deactivation Cycle of NiAl- and NiMgAl-Hydrotalcite Derived Catalysts in the Dry Reforming of Methane. Catal Lett 151, 2696–2715 (2021). https://doi.org/10.1007/s10562-020-03513-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-020-03513-4

Keywords

Navigation