Skip to main content
Log in

Computational Assessment of Valvular Dysfunction in Discrete Subaortic Stenosis: A Parametric Study

  • CFM Lab 40
  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

Purpose

Discrete subaortic stenosis (DSS) is a left-ventricular outflow tract (LVOT) obstruction caused by a membranous lesion. DSS is associated with steep aortoseptal angles (AoSAs) and is a risk factor for aortic regurgitation (AR). However, the etiology of AR secondary to DSS remains unknown. This study aimed at quantifying computationally the impact of AoSA steepening and DSS on aortic valve (AV) hemodynamics and AR.

Methods

An LV geometry reconstructed from cine-MRI data was connected to an AV geometry to generate a unified 2D LV-AV model. Six geometrical variants were considered: unobstructed (CTRL) and DSS-obstructed LVOT (DSS), each reflecting three AoSA variations (110°, 120°, 130°). Fluid-structure interaction simulations were run to compute LVOT flow, AV leaflet dynamics, and regurgitant fraction (RF).

Results

AoSA steepening and DSS generated vortex dynamics alterations and stenotic flow conditions. While the CTRL-110° model generated the highest degree of leaflet opening asymmetry, DSS preferentially altered superior leaflet kinematics, and caused leaflet-dependent alterations in systolic fluttering. LVOT steepening and DSS subjected the leaflets to increasing WSS overloads (up to 94% increase in temporal shear magnitude), while DSS also increased WSS bidirectionality on the inferior leaflet belly (+ 0.30-point in oscillatory shear index). Although AoSA steepening and DSS increased diastolic transvalvular backflow, regurgitant fractions (RF < 7%) remained below the threshold defining clinical mild AR.

Conclusions

The mechanical interactions between AV leaflets and LVOT steepening/DSS hemodynamic derangements do not cause AR. However, the leaflet WSS abnormalities predicted in those anatomies provide new support to a mechanobiological etiology of AR secondary to DSS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Abbreviations

ALE:

Arbitrary Lagrangian–Eulerian

AoSA:

Aortoseptal angle

AR:

Aortic regurgitation

AV:

Aortic valve

CCW:

Counterclockwise

CTRL:

Control group

CW:

Clockwise

DSS:

Discrete subaortic stenosis

EOA:

Effective orifice area

FSI:

Fluid-structure interaction

LV:

Left ventricle

LVOT:

Left ventricular outflow tract

OSI:

Oscillatory shear index

RF:

Regurgitant fraction

RMS:

Root mean square

TSM:

Temporal shear magnitude

WSS:

Wall shear stress

References

  1. Aboulhosn, J., and J. S. Child. Left ventricular outflow obstruction: Subaortic stenosis, bicuspid aortic valve, supravalvar aortic stenosis, and coarctation of the aorta. Circulation 114(22):2412–2422, 2006. https://doi.org/10.1161/CIRCULATIONAHA.105.592089.

    Article  PubMed  Google Scholar 

  2. Amindari, A., L. Saltik, K. Kirkkopru, M. Yacoub, and H. C. Yalcin. Assessment of calcified aortic valve leaflet deformations and blood flow dynamics using fluid-structure interaction modeling. Inf. Med. Unlocked 9:191–199, 2017. https://doi.org/10.1016/j.imu.2017.09.001.

    Article  Google Scholar 

  3. Annerel, S., J. Degroote, T. Claessens, P. Segers, P. Verdonck, and J. Vierendeels. The upstream boundary condition influences the leaflet opening dynamics in the numerical FSI simulation of an aortic BMHV. Int. J. Numer. Methods Biomed. Eng. 28(6–7):745–760, 2012. https://doi.org/10.1002/cnm.2470.

    Article  Google Scholar 

  4. Atkins, S. K., A. McNally, and P. Sucosky. Mechanobiology in cardiovascular disease management: potential strategies and current needs. Front. Bioeng. Biotechnol. 4:79, 2016. https://doi.org/10.3389/fbioe.2016.00079.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Balachandran, K., P. Sucosky, and A. P. Yoganathan. Hemodynamics and mechanobiology of aortic valve inflammation and calcification. Int. J. Inflamm. 2011:263870, 2011. https://doi.org/10.4061/2011/263870.

    Article  Google Scholar 

  6. Barboza, L. A., F. M. Garcia, J. Barnoya, J. R. Leon-Wyss, and A. R. Castañeda. Subaortic membrane and aorto-septal angle: an echocardiographic assessment and surgical outcome. World J. Pediatr. Congenital Heart Surg. 4(3):253–261, 2013. https://doi.org/10.1177/2150135113485760.

    Article  Google Scholar 

  7. Bavo, A. M., A. M. Pouch, J. Degroote, J. Vierendeels, J. H. Gorman, R. C. Gorman, and P. Segers. Patient-specific CFD simulation of intraventricular haemodynamics based on 3D ultrasound imaging. BioMed. Eng. Online 15(1):107, 2016. https://doi.org/10.1186/s12938-016-0231-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bruening, J., F. Hellmeier, P. Yevtushenko, M. Kelm, S. Nordmeyer, S. H. Sündermann, T. Kuehne, and L. Goubergrits. Impact of patient-specific LVOT inflow profiles on aortic valve prosthesis and ascending aorta hemodynamics. J. Comput. Sci. 24:91–100, 2018. https://doi.org/10.1016/j.jocs.2017.11.005.

    Article  Google Scholar 

  9. Butany, J., P. Vaideeswar, and T. E. David. Discrete subaortic membranes in adults—a clinicopathological analysis. Cardiovasc. Pathol. 18(4):236–242, 2009. https://doi.org/10.1016/j.carpath.2008.06.013.

    Article  CAS  PubMed  Google Scholar 

  10. Campbell, M. J., and T. D. V. Swinscow. Statistics at Square One (11th ed.). London: BMJ Books, 2009.

    Google Scholar 

  11. Cao, K., M. Bukač, and P. Sucosky. Three-dimensional macro-scale assessment of regional and temporal wall shear stress characteristics on aortic valve leaflets. Comput. Methods Biomech. Biomed. Eng. 19(6):603–613, 2016. https://doi.org/10.1080/10255842.2015.1052419.

    Article  CAS  Google Scholar 

  12. Cao, K., and P. Sucosky. Computational comparison of regional stress and deformation characteristics in tricuspid and bicuspid aortic valve leaflets. Int. J. Numer. Methods Biomed. Eng. 33(3):e02798, 2017. https://doi.org/10.1002/cnm.2798.

    Article  Google Scholar 

  13. Cape, E. G., M. D. Vanauker, G. Sigfússon, T. A. Tacy, and P. J. del Nido. Potential role of mechanical stress in the etiology of pediatric heart disease: septal shear stress in subaortic stenosis. J. Am. Coll. Cardiol. 30(1):247–254, 1997.

    Article  CAS  Google Scholar 

  14. Carmody, C. J., G. Burriesci, I. C. Howard, and E. A. Patterson. An approach to the simulation of fluid-structure interaction in the aortic valve. J. Biomech. 39(1):158–169, 2006. https://doi.org/10.1016/j.jbiomech.2004.10.038.

    Article  CAS  PubMed  Google Scholar 

  15. Chandra, S., N. M. Rajamannan, and P. Sucosky. Computational assessment of bicuspid aortic valve wall-shear stress: implications for calcific aortic valve disease. Biomech. Model. Mechanobiol. 11(7):1085–1096, 2012. https://doi.org/10.1007/s10237-012-0375-x.

    Article  PubMed  Google Scholar 

  16. Chandra, S., S. S. Raut, A. Jana, R. W. Biederman, M. Doyle, S. C. Muluk, and E. A. Finol. Fluid-structure interaction modeling of abdominal aortic aneurysms: the impact of patient-specific inflow conditions and fluid/solid coupling. J. Biomech. Eng. 135(8):081001, 2013. https://doi.org/10.1115/1.4024275.

    Article  Google Scholar 

  17. Chaothawee, L. Diagnostic approach to assessment of valvular heart disease using magnetic resonance imaging. part II: a practical approach for native and prosthetic heart valve stenosis. Heart Asia 4(1):171–175, 2012. https://doi.org/10.1136/heartasia-2012-010124.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Chnafa, C., S. Mendez, and F. Nicoud. Image-based large-eddy simulation in a realistic left heart. Comput. Fluids 94:173–187, 2014. https://doi.org/10.1016/j.compfluid.2014.01.030.

    Article  Google Scholar 

  19. Dasi, L. P., L. Ge, H. A. Simon, F. Sotiropoulos, and A. P. Yoganathan. Vorticity dynamics of a bileaflet mechanical heart valve in an axisymmetric aorta. Phys. Fluids 19(6):067105, 2007. https://doi.org/10.1063/1.2743261.

    Article  CAS  Google Scholar 

  20. de Vries, A. G., J. Hess, M. Witsenburg, I. M. Frohn-Mulder, J. J. Bogers, and E. Bos. Management of fixed subaortic stenosis: a retrospective study of 57 cases. J. Am. Coll. Cardiol. 19(5):1013–1017, 1992. https://doi.org/10.1016/0735-1097(92)90286-v.

    Article  PubMed  Google Scholar 

  21. Donea, J., S. Guiliani, and J. P. Halleux. An arbitrary Lagrangian–Eulerian finite-element method for transient dynamic fluid structure interactions. Comput. Methods Appl. Mech. Eng. 33(1–3):689–723, 1982. https://doi.org/10.1016/0045-7825(82)90128-1.

    Article  Google Scholar 

  22. Doost, S. N., L. Zhong, B. Su, and Y. S. Morsi. Two-dimensional intraventricular flow pattern visualization using the image-based computational fluid dynamics. Comput. Methods Biomech. Biomed. Eng. 20(5):492–507, 2017. https://doi.org/10.1080/10255842.2016.1250891.

    Article  Google Scholar 

  23. Erentug, V., N. Bozbuga, K. Kirali, D. Goksedef, E. Akinci, Ö. Isik, and C. Yakut. Surgical treatment of subaortic obstruction in adolescent and adults: long-term follow-up. J. Card. Surg. 20(1):16–21, 2005. https://doi.org/10.1111/j.0886-0440.2005.200336.x.

    Article  PubMed  Google Scholar 

  24. Ezon, D. S. Fixed subaortic stenosis: a clinical dilemma for clinicians and patients. Congenital Heart Dis. 8(5):450–456, 2013. https://doi.org/10.1111/chd.12127.

    Article  Google Scholar 

  25. Feigl, A., D. Feigl, R. V. Lucas, and J. E. Edwards. Involvement of the aortic valve cusps in discrete subaortic stenosis. Pediatr. Cardiol. 5(3):185–189, 1984.

    Article  CAS  Google Scholar 

  26. Foker, J. E. Outcomes and questions about discrete subaortic stenosis. Circulation 127(14):1447–1450, 2013. https://doi.org/10.1161/CIRCULATIONAHA.113.001619.

    Article  PubMed  Google Scholar 

  27. Guivier, C., V. Deplano, and P. Pibarot. New insights into the assessment of the prosthetic valve performance in the presence of subaortic stenosis through a fluid-structure interaction model. J. Biomech. 40(10):2283–2290, 2007. https://doi.org/10.1016/j.jbiomech.2006.10.010.

    Article  PubMed  Google Scholar 

  28. Heiberg, E., J. Sjögren, M. Ugander, M. Carlsson, H. Engblom, and H. Arheden. Design and validation of Segment—freely available software for cardiovascular image analysis. BMC Med. Imaging. 2010. https://doi.org/10.1186/1471-2342-10-1.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Hoehn, D., L. Sun, and P. Sucosky. Role of pathologic shear stress alterations in aortic valve endothelial activation. Cardiovasc. Eng. Technol. 1(2):165–178, 2010. https://doi.org/10.1007/s13239-010-0015-5.

    Article  Google Scholar 

  30. Hoeijmakers, M. J. M. M., D. A. Silva Soto, I. Waechter-Stehle, M. Kasztelnik, J. Weese, D. R. Hose, and F. N. van de Vosse. Estimation of valvular resistance of segmented aortic valves using computational fluid dynamics. J. Biomech. 94:49–58, 2019. https://doi.org/10.1016/j.jbiomech.2019.07.010.

    Article  CAS  PubMed  Google Scholar 

  31. Hung, T.-K., S. S. Khalafvand, and E. Y. K. Naaag. Fluid dynamic characteristics of systolic blood flow of the left ventricle. J. Mech. Med. Biol. 2015. https://doi.org/10.1142/s0219519415500475.

    Article  Google Scholar 

  32. Imanparast, A., N. Fatouraee, and F. Sharif. The impact of valve simplifications on left ventricular hemodynamics in a three dimensional simulation based on in vivo MRI data. J. Biomech. 49(9):1482–1489, 2016. https://doi.org/10.1016/j.jbiomech.2016.03.021.

    Article  PubMed  Google Scholar 

  33. Keshavarz-Motamed, Z., S. Khodaei, F. Rikhtegar Nezami, J. M. Amrute, S. J. Lee, J. Brown, E. Ben-Assa, T. Garcia Camarero, J. Ruano Calvo, S. Sellers, P. Blanke, J. Leipsic, J. M. de la Torre Hernandez, and E. R. Edelman. Mixed valvular disease following transcatheter aortic valve replacement: quantification and systematic differentiation using clinical measurements and image-based patient-specific in silico modeling. JAHA. 2020. https://doi.org/10.1161/jaha.119.015063.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Khalafvand, S. S., J. D. Voorneveld, A. Muralidharan, F. J. H. Gijsen, J. G. Bosch, T. van Walsum, A. Haak, N. de Jong, and S. Kenjeres. Assessment of human left ventricle flow using statistical shape modelling and computational fluid dynamics. J. Biomech. 74:116–125, 2018. https://doi.org/10.1016/j.jbiomech.2018.04.030.

    Article  CAS  PubMed  Google Scholar 

  35. Kleinert, S., and T. Geva. Echocardiographic morphometry and geometry of the left ventricular outflow tract in fixed subaortic stenosis. J. Am. Coll. Cardiol. 22(5):1501–1508, 1993. https://doi.org/10.1016/0735-1097(93)90563-G.

    Article  CAS  PubMed  Google Scholar 

  36. Kratochvíl, F., T. Paleček, T. Grus, and P. Kuchynka. Fixed subaortic stenosis. Cor. Vasa. 59(5):e436–e440, 2017. https://doi.org/10.1016/j.crvasa.2016.10.001.

    Article  Google Scholar 

  37. Krueger, S. K., J. W. French, A. D. Forker, C. C. Caudill, and R. L. Popp. Echocardiography in discrete subaortic stenosis. Circulation 59(3):506–513, 1979. https://doi.org/10.1161/01.CIR.59.3.506.

    Article  CAS  PubMed  Google Scholar 

  38. Le, T. B., and F. Sotiropoulos. Fluid-structure interaction of an aortic heart valve prosthesis driven by an animated anatomic left ventricle. J. Comput. Phys. 244:41–62, 2013. https://doi.org/10.1016/j.jcp.2012.08.036.

    Article  PubMed  Google Scholar 

  39. Liu, J., K. Cornelius, M. Graham, T. Leonard, A. Tipton, A. Yorde, and P. Sucosky. Design and computational validation of a novel bioreactor for conditioning vascular tissue to time-varying multidirectional fluid shear stress. Cardiovasc. Eng. Technol. 10(3):531–542, 2019. https://doi.org/10.1007/s13239-019-00426-1.

    Article  PubMed  Google Scholar 

  40. Mao, W., A. Caballero, R. McKay, C. Primiano, and W. Sun. Fully-coupled fluid-structure interaction simulation of the aortic and mitral valves in a realistic 3D left ventricle model. PLoS ONE 2017. https://doi.org/10.1371/journal.pone.0184729.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Marasini, M., L. Zannini, G. P. Ussia, R. Pinto, R. Moretti, F. Lerzo, and G. Pongiglione. Discrete subaortic stenosis: Incidence, morphology and surgical impact of associated subaortic anomalies. Ann. Thorac. Surg. 75(6):1763–1768, 2003. https://doi.org/10.1016/S0003-4975(02)05027-0.

    Article  PubMed  Google Scholar 

  42. Massé, D. D., J. A. Shar, K. N. Brown, S. G. Keswani, K. J. Grande-Allen, and P. Sucosky. Discrete subaortic stenosis: perspective roadmap to a complex disease. Front. Cardiovasc. Med. 2018. https://doi.org/10.3389/fcvm.2018.00122.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Neto, F. L., L. C. Marques, and V. D. Aiello. Myxomatous degeneration of the mitral valve. Autops Case Rep. 2018. https://doi.org/10.4322/acr.2018.058.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Nishimura, R. A. doppler echocardiography: theory, instrumentation, technique, and application. Mayo Clin. Proc. 60:23, 1985.

    Google Scholar 

  45. O’Leary, C. A., and I. Wilkie. Cardiac valvular and vascular disease in Bull Terriers. Vet. Pathol. 46(6):1149–1155, 2009. https://doi.org/10.1354/vp.06-VP-0230-O-FL.

    Article  PubMed  Google Scholar 

  46. Oliver, J. M., A. González, P. Gallego, A. Sánchez-Recalde, F. Benito, and J. M. Mesa. Discrete subaortic stenosis in adults: Increased prevalence and slow rate of progression of the obstruction and aortic regurgitation. J. Am. Coll. Cardiol. 38(3):835–842, 2001. https://doi.org/10.1016/S0735-1097(01)01464-4.

    Article  CAS  PubMed  Google Scholar 

  47. Opotowsky, A. R., S. S. Pickard, and T. Geva. Imaging adult patients with discrete subvalvar aortic stenosis. Curr. Opin. Cardiol. 32(5):513–520, 2017. https://doi.org/10.1097/HCO.0000000000000425.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Ozsin, K. K., F. Toktas, U. S. Sanri, and S. Yavuz. Discrete subaortic stenosis in an adult patient. Eur. Res. J. 2(1):66–70, 2016. https://doi.org/10.18621/eurj.2016.2.1.66.

    Article  Google Scholar 

  49. Parry, A. J., J. P. Kovalchin, K. Suda, D. B. McElhinney, J. Wudel, N. H. Silverman, V. M. Reddy, and F. L. Hanley. Resection of subaortic stenosis; can a more aggressive approach be justified? Eur. J. Cardiothorac. Surg. 15(5):631–638, 1999. https://doi.org/10.1016/S1010-7940(99)00060-3.

    Article  CAS  PubMed  Google Scholar 

  50. Pickard, S. S., A. Geva, K. Gauvreau, P. J. Del Nido, and T. Geva. Long-term outcomes and risk factors for aortic regurgitation after discrete subvalvular aortic stenosis resection in children. Heart 101(19):1547–1553, 2015. https://doi.org/10.1136/heartjnl-2015-307460.

    Article  CAS  PubMed  Google Scholar 

  51. Rathan, S., C. J. Ankeny, S. Arjunon, Z. Ferdous, S. Kumar, J. Fernandez Esmerats, J. M. Heath, R. M. Nerem, A. P. Yoganathan, and H. Jo. Identification of side- and shear-dependent microRNAs regulating porcine aortic valve pathogenesis. Sci Rep 2016. https://doi.org/10.1038/srep25397.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Samian, R., and M. Saidi. Investigation of left heart flow using a numerical correlation to model heart wall motion. J. Biomech. 93:77–85, 2019. https://doi.org/10.1016/j.jbiomech.2019.06.008.

    Article  PubMed  Google Scholar 

  53. Schenkel, T., M. Malve, M. Reik, M. Markl, B. Jung, and H. Oertel. MRI-Based CFD analysis of flow in a human left ventricle: methodology and application to a healthy heart. Ann. Biomed. Eng. 37(3):503–515, 2009. https://doi.org/10.1007/s10439-008-9627-4.

    Article  PubMed  Google Scholar 

  54. Schneider, P. J., and J. D. Deck. Tissue and cell renewal in the natural aortic valve of rats: an autoradiographic study. Cardiovasc. Res. 15(4):181–189, 1981. https://doi.org/10.1093/cvr/15.4.181.

    Article  CAS  PubMed  Google Scholar 

  55. Shar, J. A., K. N. Brown, S. G. Keswani, J. Grande-Allen, and P. Sucosky. Impact of aortoseptal angle abnormalities and discrete subaortic stenosis on left-ventricular outflow tract hemodynamics: preliminary computational assessment. Front. Bioeng. Biotechnol. 8:114, 2020. https://doi.org/10.3389/fbioe.2020.00114.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Sigfússon, G., T. A. Tacy, M. D. Vanauker, and E. G. Cape. Abnormalities of the left ventricular outflow tract associated with discrete subaortic stenosis in children: An echocardiographic study. J. Am. Coll. Cardiol. 30(1):255–259, 1997. https://doi.org/10.1016/S0735-1097(97)00151-4.

    Article  PubMed  Google Scholar 

  57. Stassano, P., L. Di Tommaso, A. Contaldo, M. Monaco, M. Mottola, A. Musumeci, G. Coronella, and N. Spampinato. Discrete subaortic stenosis: long-term prognosis on the progression of the obstruction and of the aortic insufficiency. Thorac. Cardiovasc. Surg. 53(1):23–27, 2005. https://doi.org/10.1055/s-2004-830388.

    Article  CAS  PubMed  Google Scholar 

  58. Stupak, E., R. Kačianauskas, A. Kačeniauskas, V. Starikovičius, A. Maknickas, R. Pacevič, M. Stašku, G. Davidavičius, and A. Aidietis. The geometric model-based patient-specific simulations of turbulent aortic valve flows. Archiv. Mech. 69(4–5):29, 2017.

    Google Scholar 

  59. Su, B., R. S. Tan, J. L. Tan, K. W. Q. Guo, J. M. Zhang, S. Leng, X. Zhao, J. C. Allen, and L. Zhong. Cardiac MRI based numerical modeling of left ventricular fluid dynamics with mitral valve incorporated. J. Biomech. 49(7):1199–1205, 2016. https://doi.org/10.1016/j.jbiomech.2016.03.008.

    Article  PubMed  Google Scholar 

  60. Su, B., L. Zhong, X. K. Wang, J. M. Zhang, R. S. Tan, J. C. Allen, S. K. Tan, S. Kim, and H. L. Leo. Numerical simulation of patient-specific left ventricular model with both mitral and aortic valves by FSI approach. Comput. Methods Programs Biomed. 113(2):474–482, 2014. https://doi.org/10.1016/j.cmpb.2013.11.009.

    Article  PubMed  Google Scholar 

  61. Sucosky, P., K. Balachandran, A. Elhammali, H. Jo, and A. P. Yoganathan. Altered shear stress stimulates upregulation of endothelial VCAM-1 and ICAM-1 in a BMP-4- and TGF-beta1-dependent pathway. Arterioscler. Thromb. Vasc. Biol. 29(2):254–260, 2009. https://doi.org/10.1161/ATVBAHA.108.176347.

    Article  CAS  PubMed  Google Scholar 

  62. Sucosky, P., M. Padala, A. Elhammali, K. Balachandran, H. Jo, and A. P. Yoganathan. Design of an ex vivo culture system to investigate the effects of shear stress on cardiovascular tissue. J. Biomech. Eng. 130(3):35001–35008, 2008. https://doi.org/10.1115/1.2907753.

    Article  Google Scholar 

  63. Sucosky, P., J. A. Shar, and J. Barrientos. Cardiovascular mechanics and disease. In: Mechanobiology, edited by G. L. Niebur. New York: Elsevier, 2020.

    Google Scholar 

  64. Sun, L., S. Chandra, and P. Sucosky. Ex vivo evidence for the contribution of hemodynamic shear stress abnormalities to the early pathogenesis of calcific bicuspid aortic valve disease. PLoS ONE 7(10):e48843, 2012. https://doi.org/10.1371/journal.pone.0048843.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Sun, L., N. M. Rajamannan, and P. Sucosky. Design and validation of a novel bioreactor to subject aortic valve leaflets to side-specific shear stress. Ann. Biomed. Eng. 39(8):2174–2185, 2011. https://doi.org/10.1007/s10439-011-0305-6.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Sun, L., N. M. Rajamannan, and P. Sucosky. Defining the role of fluid shear stress in the expression of early signaling markers for calcific aortic valve disease. PLoS ONE 8(12):e84433, 2013. https://doi.org/10.1371/journal.pone.0084433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Sun, L., and P. Sucosky. Bone morphogenetic protein-4 and transforming growth factor-beta1 mechanisms in acute valvular response to supra-physiologic hemodynamic stresses. World J. Cardiol. 7(6):331–343, 2015. https://doi.org/10.4330/wjc.v7.i6.331.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Thubrikar, M. The aortic valve. Boca Raton: CRC Press, 1990.

    Google Scholar 

  69. Van Der Linde, D., J. W. Roos-Hesselink, D. Rizopoulos, H. J. Heuvelman, W. Budts, A. P. J. Van Dijk, M. Witsenburg, S. C. Yap, A. Oxenius, C. K. Silversides, E. N. Oechslin, A. J. J. C. Bogers, and J. J. M. Takkenberg. Surgical outcome of discrete subaortic stenosis in adults a multicenter study. Circulation 127(11):1184–1191, 2013. https://doi.org/10.1161/CIRCULATIONAHA.112.000883.

    Article  PubMed  Google Scholar 

  70. Weinberg, E. J., and M. R. Kaazempur Mofrad. Transient, three-dimensional, multiscale simulations of the human aortic valve. Cardiovasc. Eng. 7(4):140–155, 2007. https://doi.org/10.1007/s10558-007-9038-4.

    Article  PubMed  Google Scholar 

  71. Weston, M. W., D. V. LaBorde, and A. P. Yoganathan. Estimation of the shear stress on the surface of an aortic valve leaflet. Ann. Biomed. Eng. 27(4):572–579, 1999. https://doi.org/10.1114/1.199.

    Article  CAS  PubMed  Google Scholar 

  72. Willems, I. E., M. G. Havenith, J. F. Smits, and M. J. Daemen. Structural alterations in heart valves during left ventricular pressure overload in the rat. Lab. Invest. 71(1):127–133, 1994.

    CAS  PubMed  Google Scholar 

  73. Wright, G. B., J. F. Keane, A. S. Nadas, W. F. Bernhard, and A. R. Castaneda. Fixed subaortic stenosis in the young: medical and surgical course in 83 patients. Am. J. Cardiol. 52(7):830–835, 1983. https://doi.org/10.1016/0002-9149(83)90423-x.

    Article  CAS  PubMed  Google Scholar 

  74. Yap, S.-C., J. W. Roos-Hesselink, A. J. J. C. Bogers, and F. J. Meijboom. Steepened aortoseptal angle may be a risk factor for discrete subaortic stenosis in adults. Int. J. Cardiol. 126(1):138–139, 2008. https://doi.org/10.1016/j.ijcard.2007.01.078.

    Article  PubMed  Google Scholar 

  75. Yap, C. H., N. Saikrishnan, G. Tamilselvan, and A. P. Yoganathan. Experimental measurement of dynamic fluid shear stress on the ventricular surface of the aortic valve leaflet. Biomech. Model. Mechanobiol. 11(1–2):171–182, 2011. https://doi.org/10.1007/s10237-011-0301-7.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Zoghbi, W. A., D. Adams, R. O. Bonow, M. Enriquez-Sarano, E. Foster, P. A. Grayburn, R. T. Hahn, Y. Han, J. Hung, R. M. Lang, S. H. Little, D. J. Shah, S. Shernan, P. Thavendiranathan, J. D. Thomas, and N. J. Weissman. Recommendations for noninvasive evaluation of native valvular regurgitation. J. Am. Soc. Echocardiogr. 30(4):303–371, 2017. https://doi.org/10.1016/j.echo.2017.01.007.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Matt Sherwood and Mr. Aaron Madaris (Wright State University) for their assistance in acquiring the MRI data.

Funding

This work was supported in part by the National Institutes of Health (NIH) Grant R01HL140305, and the College of Engineering and Computer Science at Wright State University.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Sucosky.

Additional information

Associate Editor Ajit P. Yoganathan oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Information 1 (DOCX 39 kb)

Supplementary Information 2 (MP4 6835 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shar, J.A., Keswani, S.G., Grande-Allen, K.J. et al. Computational Assessment of Valvular Dysfunction in Discrete Subaortic Stenosis: A Parametric Study. Cardiovasc Eng Tech 12, 559–575 (2021). https://doi.org/10.1007/s13239-020-00513-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-020-00513-8

Keywords

Navigation