Skip to main content

Advertisement

Log in

Host-targeted salt stress affects fitness and vector performance of bird cherry-oat aphid (Rhopalosiphum padi L.) on wheat

  • Original Paper
  • Published:
Arthropod-Plant Interactions Aims and scope Submit manuscript

Abstract

Salinity is becoming a limiting factor for crop production, particularly in arid and semiarid areas all around the world. This phenomenon can adversely affect both plant integrity and herbivorous insects. Herein, we assessed the bottom-up effects of four salinity levels (3.1 [control], 6.0, 10 and 12.0 dS/m) on the life parameters of viruliferous bird cherry-oat aphid (Rhopalosiphum padi L.) and the aphid transmission of Barley yellow dwarf virus-PAV (BYDV-PAV) to wheat host. The results revealed that nymph longevity and adult pre-oviposition period of the aphids fed on salinity-stressed plants were significantly increased, while adult longevity, gross reproductive rate, net reproductive rate, intrinsic rate of increase and finite rate of increase of the aphids on plants challenged with salinity levels of 10 and 12.0 dS/m were significantly reduced. Also, survival rate and life expectancy of viruliferous R. padi remarkably decreased on wheat plants under 10 and 12.0 dS/m salinity. The R. padi-mediated transmission of BYDV-PAV to salinity-stressed (10 and 12.0 dS/m) wheat plants was significantly reduced. Moreover, the biochemical assays showed a significant increase in biosynthesis of phenolics and free proline within wheat plants challenged with salinity stress. Based on these findings, it can be concluded that salinity stress negatively influences life parameters of viruliferous R. padi, possibly through induction of phenolics and free proline within the salinity-stressed plants, and the aphid transmission of BYDV-PAV to wheat host.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdel-Aal ES, Hucl P, Sosulski FW, Graf R, Gillott C, Pietrzak L (2001) Screening spring wheat for midge resistance in relation to ferulic acid content. J Agric Food Chem 49(8):3559–3566

    Article  CAS  PubMed  Google Scholar 

  • Adachi S, Honma T, Yasaka R, Ohshima K, Tokuda M (2018) Effects of infection by Turnip mosaic virus on the population growth of generalist and specialist aphid vectors on turnip plants. PLoS ONE 13(7):e0200784

    Article  PubMed  PubMed Central  Google Scholar 

  • Akula R, Ravishankar GA (2011) Influence of abiotic stress signals on secondary metabolites in plants. Plant Signal Behav 6(11):1720–1731

    Article  Google Scholar 

  • Araya F, Abarca O, Zúñiga GE, Corcuera LJ (1991) Effects of NaCl on glycine-betaine and on aphids in cereal seedlings. Phytochemistry 30(6):1793–1795

    Article  CAS  Google Scholar 

  • Ashraf MA, Ashraf M, Ali Q (2010) Response of two genetically diverse wheat cultivars to salt stress at different growth stages: leaf lipid peroxidation and phenolic contents. Pak J Bot 42(1):559–565

    CAS  Google Scholar 

  • Aucejo-Romero S, Gómez-Cadenas A, Jacas-Miret JA (2004) Effects of NaCl-stressed citrus plants on life-history parameters of Tetranychus urticae (Acari: Tetranychidae). Exp Appl Acarol 33(1–2):55

    Article  PubMed  Google Scholar 

  • Ayers RS, Westcot DW (1985) Water quality for agriculture, vol 29. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Azizpour K, Shakiba MR, Sima NKK, Alyari H, Mogaddam M, Esfandiari E, Pessarakli M (2010) Physiological response of spring durum wheat genotypes to salinity. J Plant Nutr 33(6):859–873

    Article  CAS  Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39(1):205–207

    Article  CAS  Google Scholar 

  • Bennett RN, Wallsgrove RM (1994) Secondary metabolites in plant defence mechanisms. New Phytol 127(4):617–633

    Article  CAS  Google Scholar 

  • Berner J, Westhuizen A (2010) The selective induction of the phenylalanine ammonia-lyase pathway in the resistance response of wheat to the Russian wheat aphid. Cereal Res Commun 38(4):506–513

    Article  CAS  Google Scholar 

  • Cakmak I, Demiral MA (2007) Response of Tetranychus cinnabarinus feeding on NaCl-stressed strawberry plants. Phytoparasitica 35(1):37–49

    Article  Google Scholar 

  • Carr JP, Murphy AM, Tungadi T, Yoon JY (2019) Plant defense signals: players and pawns in plant-virus-vector interactions. Plant Sci 279:87–95

    Article  CAS  PubMed  Google Scholar 

  • Chelli-Chaabouni A, Mosbah AB, Maalej M, Gargouri K, Gargouri-Bouzid R, Drira N (2010) In vitro salinity tolerance of two pistachio rootstocks: Pistacia vera L. and P. atlantica Desf. Environ Exp Bot 69(3):302–312

    Article  CAS  Google Scholar 

  • Cheraghi SAM (2004) Institutional and scientific profiles of organizations working on saline agriculture in Iran. In: Prospects of Saline Agriculture in the Arabian Peninsula: Proceedings of the International Seminar on Prospects of Saline Agriculture in the GCC Countries. pp 18–20

  • Chi H (2019) TWOSEX-MSChart: a computer program for the age-stage, two-sex life table analysis. Available onhttp://140.120, 197

  • Chi H, Getz WM (1988) Mass rearing and harvesting based on an age-stage, two-sex life table: a potato tuberworm (Lepidoptera: Gelechiidae) case study. Environ Entomol 17(1):18–25

    Article  Google Scholar 

  • Chi HSIN, Liu H (1985) Two new methods for the study of insect population ecology. Bull Inst Zool Acad Sin 24(2):225–240

    Google Scholar 

  • Chrzanowski G, Leszczyński B, Czerniewicz P, Sytykiewicz H, Matok H, Krzyżanowski R, Sempruch C (2012) Effect of phenolic acids from black currant, sour cherry and walnut on grain aphid (Sitobion avenae F.) development. Crop Prot 35:71–77

    Article  CAS  Google Scholar 

  • Ciepiela A (1989) Biochemical basis of winter wheat resistance to the grain aphid, Sitobion avenae. Entomol Exp et Appl 51(3):269–275

    Article  CAS  Google Scholar 

  • Corcuera LJ, Argandona VH, Zuniga GE (1987) Resistance of cereal crops to aphids: role of allelochemicals. Allelochemicals: Role in agriculture and forestry. ACS Symposium Series, vol 330. ACS Publications, Washington, D.C, pp 129–135

    Google Scholar 

  • Crowder DW, Li J, Borer ET, Finke DL, Sharon R, Pattemore D, Medlock J (2019) Species interactions affect the spread of vector-borne plant pathogens independent of transmission mode. Ecology 100:e02782

    Article  PubMed  Google Scholar 

  • Davis TS, Bosque-Pérez NA, Foote NE, Magney T, Eigenbrode SD (2015) Environmentally dependent host–pathogen and vector–pathogen interactions in the Barley yellow dwarf virus pathosystem. J Appl Ecol 52(5):1392–1401

    Article  Google Scholar 

  • Dreyer DL, Jones KC (1981) Feeding deterrency of flavonoids and related phenolics towards Schizaphis graminum and Myzus persicae: aphid feeding deterrents in wheat. Phytochemistry 20(11):2489–2493

    Article  CAS  Google Scholar 

  • Dugasa MT, Cao F, Ibrahim W, Wu F (2019) Differences in physiological and biochemical characteristics in response to single and combined drought and salinity stresses between wheat genotypes differing in salt tolerance. Physiol Plant 165(2):134–143

    Article  CAS  PubMed  Google Scholar 

  • Efron B, Tibshirani RJ (1994) An introduction to the bootstrap. CRC Press, Boca Raton

    Book  Google Scholar 

  • Foster WA, Treherne JE (1976) Insects of marine saltmarshes: problems and adaptations. Mar Insects 176:5–42

    Google Scholar 

  • Goodman D (1982) Optimal life histories, optimal notation, and the value of reproductive value. Am Nat 119:803–823

    Article  Google Scholar 

  • Hajiboland R, Norouzi F, Poschenrieder C (2014) Growth, physiological, biochemical and ionic responses of pistachio seedlings to mild and high salinity. Trees 28(4):1065–1078

    Article  CAS  Google Scholar 

  • Han P, Wang ZJ, Lavoir AV, Michel T, Seassau A, Zheng WY et al (2016) Increased water salinity applied to tomato plants accelerates the development of the leaf miner Tuta absoluta through bottom-up effects. Sci Rep 6:32403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harris KF, Maramorosch K (eds) (2014) Aphids as virus vectors. Elsevier, Amsterdam

    Google Scholar 

  • Harris KF (2018) Aphid transmission of plant viruses. Plant viruses. CRC Press, Boca Raton, pp 177–204

    Chapter  Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Biol 51(1):463–499

    Article  CAS  Google Scholar 

  • Hernandez JA, Ferrer MA, Jimenez A, Barcelo AR, Sevilla F (2001) Antioxidant systems and O2−/H2O2 production in the apoplast of pea leaves. Its relation with salt-induced necrotic lesions in minor veins. Plant Physiol 127:817–831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hull R (2014) Matthews’ plant virology, 5th edn. Academic Press, Cambridge

    Google Scholar 

  • Hussain M, Ahmad S, Hussain S, Lal R, Ul-Allah S, Nawaz A (2018) Rice in saline soils: physiology, biochemistry, genetics, and management. Advances in agronomy, vol 148. Academic Press, Cambridge, pp 231–287

    Google Scholar 

  • Isayenkov SV (2012) Physiological and molecular aspects of salt stress in plants. Cytol Genet 46:302–318

    Article  Google Scholar 

  • Isayenkov SV, Maathuis FJ (2019) Plant salinity stress: many unanswered questions remain. Front Plant Sci 10:80

    Article  PubMed  PubMed Central  Google Scholar 

  • James RA, von Caemmerer S, Condon AT, Zwart AB, Munns R (2008) Genetic variation in tolerance to the osmotic stress component of salinity stress in durum wheat. Funct Plant Biol 35(2):111–123

    Article  CAS  PubMed  Google Scholar 

  • Jiménez-Martínez ES, Bosque-Pérez NA, Berger PH, Zemetra RS (2004) Life history of the bird cherry-oat aphid, Rhopalosiphum padi (Homoptera: Aphididae), on transgenic and untransformed wheat challenged with Barley yellow dwarf virus. J Econ Entomol 97(2):203–212

    Article  PubMed  Google Scholar 

  • Kamangar SB, Taning CNT, De Jonghe K, Smagghe G (2019) Quantity and transmission efficiency of an isolate of the Potato virus Y-Wilga (PVY N−Wi) by aphid species reared on different host plants. J Plant Dis Prot 126:529–534

    Article  Google Scholar 

  • Khare T, Kumar V, Kishor PK (2015) Na+ and Cl ions show additive effects under NaCl stress on induction of oxidative stress and the responsive antioxidative defense in rice. Protoplasma 252(4):1149–1165

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Beena AS, Awana M, Singh A (2017) Physiological, biochemical, epigenetic and molecular analyses of wheat (Triticum aestivum) genotypes with contrasting salt tolerance. Front Plant Sci 8:1151

    Article  PubMed  PubMed Central  Google Scholar 

  • Laney AG, Chen P, Korth KL (2018) Interactive effects of aphid feeding and virus infection on host gene expression and volatile compounds in salt-stressed soybean, Glycinemax (L.) Merr. Arthropod-Plant Interact 12(3):401–413

    Article  Google Scholar 

  • Leszczyński B, Warchoł J, Niraz S (1985) The influence of phenolic compounds on the preference of winter wheat cultivars by cereal aphids. Int J Trop Insect Sci 6(2):157–158

    Google Scholar 

  • Leszczynski B, Wright LC, Bakowski T (1989) Effect of secondary plant substances on winter wheat resistance to grain aphid. Entomol Exp Appl 52(2):135–139

    Article  CAS  Google Scholar 

  • Lim JH, Park KJ, Kim BK, Jeong JW, Kim HJ (2012) Effect of salinity stress on phenolic compounds and carotenoids in buckwheat (Fagopyrumesculentum M.) sprout. Food Chem 135(3):1065–1070

    Article  CAS  PubMed  Google Scholar 

  • Malik CP, Singh MB (1980) Plant enzymology and histo-enzymology. Kalyani Publishers, Chennai

    Google Scholar 

  • Mekawy AMM, Abdelaziz MN, Ueda A (2018) Apigenin pretreatment enhances growth and salinity tolerance of rice seedlings. Plant Physiol Biochem 130:94–104

    Article  CAS  PubMed  Google Scholar 

  • Miller WA, Rasochová L (1997) Barley yellow dwarf viruses. Annu Rev Phytopathol 35:167–190

    Article  CAS  PubMed  Google Scholar 

  • Mostefaoui H, Allal-Benfekih L, Djazouli ZE, Petit D, Saladin G (2014) Why the aphid Aphis spiraecola is more abundant on clementine tree than Aphis gossypii? CR Biol 337(2):123–133

    Article  Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25(2):239–250

    Article  CAS  PubMed  Google Scholar 

  • Munns R, Gilliham M (2015) Salinity tolerance of crops–what is the cost? New Phytol 208(3):668–673

    Article  CAS  PubMed  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Ann Rev Plant Biol 59:651–681

    Article  CAS  Google Scholar 

  • Nam KH, Kim YJ, Moon YS, Pack IS, Kim CG (2017) Salinity affects metabolomic profiles of different trophic levels in a food chain. Sci Total Environ 599:198–206

    Article  PubMed  Google Scholar 

  • Pakdel A, Afsharifar A, Niazi A, Izadpanah K (2015) Molecular characterization of the complete genome of a barley yellow dwarf virus-PAV isolate from Iran. Iran J Plant Pathol 51(2):163–176 (in Persian)

    Google Scholar 

  • Parihar P, Singh S, Singh R, Singh VP, Prasad SM (2015) Effect of salinity stress on plants and its tolerance strategies: a review. Environ Sci Pollut Res 22(6):4056–4075

    Article  CAS  Google Scholar 

  • Petridis A, Therios I, Samouris G, Tananaki C (2012) Salinity-induced changes in phenolic compounds in leaves and roots of four olive cultivars (Olea europaea L.) and their relationship to antioxidant activity. Environ Exp Bot 79:37–43

    Article  CAS  Google Scholar 

  • Polack LA, Pereyra PC, Sarandón SJ (2011) Effects of plant stress and habitat manipulation on Aphid control in greenhouse sweet peppers. J Sustain Agric 35(7):699–725

    Article  Google Scholar 

  • Qadir M, Qureshi AS, Cheraghi SAM (2008) Extent and characterisation of salt-affected soils in Iran and strategies for their amelioration and management. Land Degrad Dev 19(2):214–227

    Article  Google Scholar 

  • Quais MK, Ansari NA, Wang GY, Zhou WW, Zhu ZR (2019) Host plant salinity stress affects the development and population parameters of Nilaparvata lugens (Hemiptera: Delphacidae). Environ Entomol 48(5):1149–1161

    Article  PubMed  Google Scholar 

  • Rahnama A, Fakhri S, Meskarbashee M (2019) Root growth and architecture responses of bread wheat cultivars to salinity stress. Agron J 111(6):1–8

    Article  Google Scholar 

  • Rattan RS (2010) Mechanism of action of insecticidal secondary metabolites of plant origin. Crop Prot 29(9):913–920

    Article  CAS  Google Scholar 

  • Renault S, Wolfe S, Markham J, Avila-Sakar G (2016) Increased resistance to a generalist herbivore in a salinity-stressed non-halophytic plant. AoB Plants 8:plw028

    Article  PubMed  PubMed Central  Google Scholar 

  • Rezvani Moghaddam P, Koocheki A (2001) Research history on salt affected lands of Iran: Present and future prospects—Halophytic ecosystem—International symposium on prospects of saline agriculture in the GCC Countries. Dubai, UAE

  • Safari M, Ferrari MJ, Roossinck MJ (2019) Manipulation of aphid behavior by a persistent plant virus. J Virol 93(9):e01781-e1818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shabala S (ed) (2017) Plant stress physiology. CABI, Wallingford

    Google Scholar 

  • Sienkiewicz-Paderewska D, Dmuchowski W, Baczewska AH, Brągoszewska P, Gozdowski D (2017) The effect of salt stress on lime aphid abundance on Crimean linden (Tilia ‘Euchlora’) leaves. Urban Forest Urban Green 21:74–79

    Article  Google Scholar 

  • Singh S (2016) Characterization of resistance in barley against corn leaf aphid Rhopalosiphum maidis (Fitch). Doctoral dissertation. Punjab Agricultural University, Ludhiana

    Google Scholar 

  • Singh A, Bhushan B, Gaikwad K, Yadav OP, Kumar S, Rai RD (2015) Induced defence responses of contrasting bread wheat genotypes under differential salt stress imposition. Indian J Biochem Biophys 52:75–85

    CAS  PubMed  Google Scholar 

  • Srivastava PN, Auclair JL, Srivastava U (1983) Effect of nonessential amino acids on phagostimulation and maintenance of the pea aphid, Acyrthosiphon pisum. Can J Zool 61(10):2224–2229

    Article  CAS  Google Scholar 

  • Tiwari JK, Munshi AD, Kumar R, Pandey RN, Arora A, Bhat JS, Sureja AK (2010) Effect of salt stress on cucumber: Na+–K+ ratio, osmolyte concentration, phenols and chlorophyll content. Acta Physiol Plant 32(1):103–114

    Article  CAS  Google Scholar 

  • Trębicki P, Nancarrow N, Cole E, Bosque-Pérez NA, Constable FE, Freeman AJ et al (2015) Virus disease in wheat predicted to increase with a changing climate. Global Change Biol 21(9):3511–3519

    Article  Google Scholar 

  • Tsugane K, Kobayashi K, Niwa Y, Ohba Y, Wada K, Kobayashi H (1999) A recessive Arabidopsis mutant that grows photoautotrophically under salt stress shows enhanced active oxygen detoxification. Plant Cell 11:1195–1206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Emden HF, Harrington R (eds) (2017) Aphids as crop pests. CABI, Wallingford

    Google Scholar 

  • Verbruggen N, Hermans C (2008) Proline accumulation in plants: a review. Amino Acids 35(4):753–759

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218(1):1–14

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Eneji AE, Kong X, Wang K, Dong H (2015) Salt stress effects on secondary metabolites of cotton in relation to gene expression responsible for aphid development. PLoS ONE 10(6):e0129541

    Article  PubMed  PubMed Central  Google Scholar 

  • Weimberg R (1987) Solute adjustments in leaves of two species of wheat at two different stages of growth in response to salinity. Physiol Plant 70(3):381–388

    Article  CAS  Google Scholar 

  • Wójcicka A (2010) Cereal phenolic compounds as biopesticides of cereal aphids. Pol J Environ Stud 19(6):1337–1343

    Google Scholar 

  • Wojcicka A, Leszczynski B (2005) Secondary plant compounds may serve as biopesticides for the grain aphid Sitobion avenae F. PESTYCYDY-WARSZAWA- 4:163

    Google Scholar 

  • Zhu JK (2001) Plant salt tolerance. Trends Plant Sci 6:66–72

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The research was financially supported by Agricultural Sciences and Natural Resources University of Khuzestan [Grant No. 961.31].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamad Hamed Ghodoum Parizipour.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: John Tooker.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghodoum Parizipour, M.H., Rajabpour, A., Jafari, S. et al. Host-targeted salt stress affects fitness and vector performance of bird cherry-oat aphid (Rhopalosiphum padi L.) on wheat. Arthropod-Plant Interactions 15, 47–58 (2021). https://doi.org/10.1007/s11829-020-09795-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11829-020-09795-0

Keywords

Navigation