Skip to main content
Log in

Influence of gradient structure on wear characteristics of centrifugally cast functionally graded magnesium matrix composites for automotive applications

  • Original Article
  • Published:
Archives of Civil and Mechanical Engineering Aims and scope Submit manuscript

Abstract

In the past few years, the functionally graded materials (FGMs) have proved useful in many industrial applications such as aerospace, automotive, transportation and infrastructure because of their advantages like the ability to control mechanical properties, residual stresses, wear, and corrosion behavior through a smooth gradation of the elements in a particular direction of the products. In this current work, the microstructural and wear properties of AZ91 alloy reinforced with silicon carbide particles (SiCp) produced through the centrifugal casting method were investigated. Four weight fractions of SiCp with 10 µm average size were used to fabricate functionally graded (FG) tubes in the two mold rotational speeds of 1200 and 1500 rpm. Microstructural, microhardness, and wear tests were used for characterizing the developed FG tubes. From the results obtained, the gradient distribution of SiC particles inside the AZ91 matrix alloy substantially improved hardness and wear resistance for the FG tubes comparing to unreinforced alloy. Moreover, the mold rotational speed is the main factor in controlling the distribution of particles, thus determining the gradient properties of the manufactured FG tubes. These findings suggest that FG tubes are useful for aerospace and automotive applications that require more excellent surface resistance.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Saleh B, et al. 30 Years of functionally graded materials: an overview of manufacturing methods, applications and future challenges. Compos Part B Eng. 2020;201:1–46. https://doi.org/10.1016/j.compositesb.2020.108376.

    Article  Google Scholar 

  2. Saleh B, Jiang J, Ma A, Song D, Yang D-H. Effect of main parameters on the mechanical and wear behaviour of functionally graded materials by centrifugal casting: a review. Met Mater Int. 2019;25(6):1395–409. https://doi.org/10.1007/s12540-019-00273-8.

    Article  ADS  Google Scholar 

  3. Wang L-S, Jiang J-H, Saleh B, Xie Q-Y, Qiong X, Liu H, Ma A-B. Controlling corrosion resistance of a biodegradable Mg–Y–Zn alloy with LPSO phases via multi-pass ECAP process. Acta Metall Sin Eng Lett. 2020. https://doi.org/10.1007/s40195-020-01042-y.

    Article  Google Scholar 

  4. Xu Q, et al. Enhancement of mechanical properties and rolling formability in AZ91 alloy by RD-ECAP processing. Mater (Basel). 2019;12(21):3503. https://doi.org/10.3390/ma12213503.

    Article  ADS  CAS  Google Scholar 

  5. Saleh B, et al. Statistical analysis of dry sliding wear process parameters for AZ91 alloy processed by RD-ECAP using response surface methodology. Met Mater Int. 2020. https://doi.org/10.1007/s12540-020-00624-w.

    Article  Google Scholar 

  6. Xu Q, et al. Dry sliding wear behavior of AZ91 alloy processed by rotary-die equal channel angular pressing. J Mater Eng Perform. 2020. https://doi.org/10.1007/s11665-020-04883-x.

    Article  Google Scholar 

  7. Saleh B, Jiang J, Fathi R, Xu Q, Wang L, Ma A. Study of the microstructure and mechanical characteristics of AZ91–SiCp composites fabricated by stir casting. Arch Civ Mech Eng. 2020. https://doi.org/10.1007/s43452-020-00071-9.

    Article  Google Scholar 

  8. Qiong X, Ma A, Saleh B, Li Y, Yuan Y, Jiang J, Ni C. Enhancement of strength and ductility of SiCp/AZ91 composites by RD-ECAP processing. Mater Sci Eng A. 2019. https://doi.org/10.1016/j.msea.2019.138579.

    Article  Google Scholar 

  9. El-Galy IM, Saleh BI, Ahmed MH. Functionally graded materials classifications and development trends from industrial point of view. SN Appl Sci. 2019;1(11):1378–401. https://doi.org/10.1007/s42452-019-1413-4.

    Article  Google Scholar 

  10. Kieback B, Neubrand A, Riedel H. Processing techniques for functionally graded materials. Mater Sci Eng A. 2003;362:81–105. https://doi.org/10.1016/S0921-5093(03)00578-1.

    Article  CAS  Google Scholar 

  11. Zhang C, et al. Additive manufacturing of functionally graded materials: a review. Mater Sci Eng A. 2019;764:9. https://doi.org/10.1016/j.msea.2019.138209.

    Article  CAS  Google Scholar 

  12. Chirita G, Soares D, Silva FS. Advantages of the centrifugal casting technique for the production of structural components with Al-Si alloys. Mater Des. 2008;29(1):20–7. https://doi.org/10.1016/j.matdes.2006.12.011.

    Article  CAS  Google Scholar 

  13. Rahimipour MR, Sobhani M. Evaluation of centrifugal casting process parameters for in situ fabricated functionally gradient Fe-TiC composite. Metall Mater Trans B. 2013;44B:1120–3. https://doi.org/10.1007/s11663-013-9903-z.

    Article  ADS  CAS  Google Scholar 

  14. Watanabe Y, Sato R, Kim I, Miura S, Miura H. Functionally graded material fabricated by a centrifugal method from ZK60A magnesium alloy. Mater Trans. 2005;46(5):944–9.

    Article  CAS  Google Scholar 

  15. Saleh B, Jiang J, Ma A, Song D, Yang D, Xu Q. Review on the influence of different reinforcements on the microstructure and wear behavior of functionally graded aluminum matrix composites by centrifugal casting. Met Mater Int. 2020;26(7):933–60. https://doi.org/10.1007/s12540-019-00491-0.

    Article  CAS  Google Scholar 

  16. Vieira AC, Sequeira PD, Gomes JR, Rocha LA. Dry sliding wear of Al alloy/SiCp functionally graded composites: influence of processing conditions. Wear. 2009;267:585–92. https://doi.org/10.1016/j.wear.2009.01.041.

    Article  CAS  Google Scholar 

  17. Prabhu TR. Processing and properties evaluation of functionally continuous graded 7075 Al alloy/SiC composites. Arch Civ Mech Eng. 2017;17(1):20–31. https://doi.org/10.1016/j.acme.2016.08.004.

    Article  Google Scholar 

  18. EL-Galy IM, Bassiouny BI, Ahmed MH. Characterization of functionally graded Al-SiCp metal matrix composites manufactured by centrifugal casting. Alexandria Eng J. 2017;56(4):371–81. https://doi.org/10.1016/j.aej.2017.03.009.

    Article  Google Scholar 

  19. EL-Galy IM, Bassiouny BI, Ahmed MH. empirical model for dry sliding wear behaviour of centrifugally cast functionally graded Al/SiCp composite. Key Eng Mater. 2018;786:276–85. https://doi.org/10.4028/www.scientific.net/KEM.786.276.

    Article  Google Scholar 

  20. Saleh BI, Ahmed MH. Development of functionally graded tubes based on pure Al/Al2O3 metal matrix composites manufactured by centrifugal casting for automotive applications. Met Mater Int. 2020;26(9):1430–40. https://doi.org/10.1007/s12540-019-00391-3.

    Article  CAS  Google Scholar 

  21. Rao AG, Mohape M, Katkar VA, Gowtam DS, Deshmukh VP, Shah AK. Fabrication and characterization of aluminum (6061)- boron carbide functionally gradient material. Mater Manuf Process. 2014. https://doi.org/10.1080/10426910903180037 (no. December 2014).

    Article  Google Scholar 

  22. Ramkumar KR, Sivasankaran S, Al-Mufadi FA, Siddharth S, Raghu R. Investigations on microstructure, mechanical, and tribological behaviour of AA 7075–x wt.% TiC composites for aerospace applications. Arch Civ Mech Eng. 2019;19(2):428–38. https://doi.org/10.1016/j.acme.2018.12.003.

    Article  Google Scholar 

  23. Junus S, Zulfia A. Development of seamless pipe based on Al/Al2O3 composite produced by stir casting and centrifugal casting. Mater Sci Forum. 2016;857:179–82. https://doi.org/10.4028/www.scientific.net/MSF.857.179.

    Article  Google Scholar 

  24. Fathi R, Ma A, Saleh B, Xu Q, Jiang J. Investigation on mechanical properties and wear performance of functionally graded AZ91-SiCp composites via centrifugal casting. Mater Today Commun. 2020. https://doi.org/10.1016/j.mtcomm.2020.101169.

    Article  Google Scholar 

  25. Yu W, et al. Microstructure, mechanical properties and fracture mechanism of Ti2AlC reinforced AZ91D composites fabricated by stir casting. J Alloys Compd. 2017;702:199–208. https://doi.org/10.1016/j.jallcom.2017.01.231.

    Article  CAS  Google Scholar 

  26. Asgari A, Sedighi M, Krajnik P. Magnesium alloy-silicon carbide composite fabrication using chips waste. J Clean Prod. 2019;232:1187–94. https://doi.org/10.1016/j.jclepro.2019.06.018.

    Article  CAS  Google Scholar 

  27. Rajan TPD, Pillai RM, Pai BC. Characterization of centrifugal cast functionally graded aluminum-silicon carbide metal matrix composites. Mater Charact. 2010;61(10):923–8. https://doi.org/10.1016/j.matchar.2010.06.002.

    Article  CAS  Google Scholar 

  28. Poddar P, Srivastava VC, De PK, Sahoo KL. Processing and mechanical properties of SiC reinforced cast magnesium matrix composites by stir casting process. Mater Sci Eng A. 2007;460–461:357–64. https://doi.org/10.1016/j.msea.2007.01.052.

    Article  CAS  Google Scholar 

  29. Huang SJ, Chen ZW. Grain refinement of AlNp/AZ91D magnesium metal-matrix composites. Kov Mater. 2011;49(4):259–64. https://doi.org/10.4149/km2011.42.59.

    Article  CAS  Google Scholar 

  30. Karun AS, Rajan TPD, Pillai UTS, Pai BC, Rajeev VR. Enhancement in tribological behaviour of functionally graded SiC reinforced aluminium composites by centrifugal casting. J Compos Mater. 2016;50:2255–69. https://doi.org/10.1177/0021998315602946.

    Article  CAS  Google Scholar 

  31. García-Rodríguez S, Torres B, Maroto A, López AJ, Otero E, Rams J. Dry sliding wear behavior of globular AZ91 magnesium alloy and AZ91/SiCp composites. Wear. 2017;390–391:1–10. https://doi.org/10.1016/j.wear.2017.06.010.

    Article  CAS  Google Scholar 

  32. Kumar KKA, Viswanath A, Rajan TPD, Pillai UTS, Pai BC. Physical, mechanical, and tribological attributes of stir-cast AZ91/SiCp composite. Acta Met Sin (Engl Lett). 2014;27(2):295–305. https://doi.org/10.1007/s40195-014-0045-3.

    Article  CAS  Google Scholar 

  33. Xiao P, et al. Tribological behavior of in-situ nanosized TiB2 particles reinforced AZ91 matrix composite. Tribol Int. 2018;128:130–9. https://doi.org/10.1016/j.triboint.2018.07.003.

    Article  CAS  Google Scholar 

  34. Li J, et al. Tribological behavior of TiC particles reinforced 316Lss composite fabricated using selective laser melting. Mater (Basel). 2019;12(6):1–16. https://doi.org/10.3390/ma12060950.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The study was supported by the National Natural Science Foundation of China (Grant No. 51979099 and 51774109, the Natural Science Foundation of Jiangsu Province of China (Grant No. BK20191303), the Fundamental Research Funds for the Central Universities (Grant No. 2019B79814), Postgraduate Education Reform Project of Jiangsu Province (JGLX19_027), The Key Research and Development Project of Jiangsu Province of China (Grant No.BE2017148).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bassiouny Saleh or Jinghua Jiang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

This manuscript does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saleh, B., Jiang, J., Fathi, R. et al. Influence of gradient structure on wear characteristics of centrifugally cast functionally graded magnesium matrix composites for automotive applications. Archiv.Civ.Mech.Eng 21, 12 (2021). https://doi.org/10.1007/s43452-020-00168-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43452-020-00168-1

Keywords

Navigation