Skip to main content
Log in

Forces Involved with Labor and Delivery—A Biomechanical Perspective

  • Bioengineering for Women’s Health
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Childbirth is a primarily biomechanical process of physiology, and one that engineers have recently begun to address in a broader fashion. Computational models are being developed to address the biomechanical effects of parturition on both maternal and fetal tissues. Experimental research is being conducted to understand how maternal tissues adapt to intrauterine forces near the onset of labor. All of this research requires an understanding of the forces that are developed through maternal efforts—both uterine contractions and semi-voluntary pushing—and that can be applied by the clinician to assist with the delivery. This work reviews the current state of knowledge regarding forces of labor and delivery, with a focus on macro-level biomechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Ali, U. A., and E. R. Norwitz. Vacuum-assisted vaginal delivery. Rev. Obstet. Gynecol. 2:5–17, 2009.

    Google Scholar 

  2. Allen, R. H., and E. D. Gurewitsch. Temporary Erb-Duchenne palsy without shoulder dystocia or traction to the fetal head. Obstet. Gynecol. 105:1210–1212, 2005.

    Article  PubMed  Google Scholar 

  3. Allen, R., J. Sorab, and B. Gonik. Risk factors for shoulder dystocia: an engineering study of clinician-applied forces. Obstet. Gynecol. 77:352–355, 1991.

    CAS  PubMed  Google Scholar 

  4. Allman, A. C. J., E. S. G. Genevier, M. R. Johnson, and P. J. Steer. Head-to-cervix force: an important physiological variable in labour. 2. Peak active force, peak active pressure and mode of delivery. BJOG An. Int. J. Obstet. Gynaecol. 103:769–775, 1996.

    Article  CAS  Google Scholar 

  5. Allman, A. C. J., E. S. G. Genevier, M. R. Johnson, and P. J. Steer. Head-to-cervix force: An important physiological variable in labour. 1. The temporal relation between head-to-cervix force and intrauterine pressure during labour. BJOG An. Int. J. Obstet. Gynaecol. 103:763–768, 1996.

    Article  CAS  Google Scholar 

  6. Al-Qahtani, S., A. Heath, S. Quenby, F. Dawood, R. Floyd, T. Burdyga, and S. Wray. Diabetes is associated with impairment of uterine contractility and high Caesarean section rate. Diabetologia 55:489–498, 2012.

    Article  CAS  PubMed  Google Scholar 

  7. Al-Shawaf, T., S. Al-Moghraby, and A. Akiel. Normal levels of uterine activity in primigravidae and women of high parity in spontaneous labour. J. Obstet. Gynaecol. (Lahore) 8:18–23, 1987.

    Article  Google Scholar 

  8. Antonucci, M. C., M. C. Pitman, T. Eid, P. J. Steer, and E. S. Genevier. Simultaneous monitoring of head-to-cervix forces, intrauterine pressure and cervical dilatation during labour. Med. Eng. Phys. 19:317–326, 1997.

    Article  CAS  PubMed  Google Scholar 

  9. Arrowsmith, S., H. Robinson, K. Noble, and S. Wray. What do we know about what happens to myometrial function as women age? J. Muscle Res. Cell Motil. 33:209–217, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ashton-Miller, J. A., and J. O. L. DeLancey. On the biomechanics of vaginal birth and common sequelae. Annu. Rev. Biomed. Eng. 11:163–176, 2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Barclay, M., H. Andersen, and C. Simon. Emergent behaviors in a deterministic model of the human uterus. Reprod. Sci. 17:948–954, 2010.

    Article  PubMed  Google Scholar 

  12. Beazley, J. M. An approach to controlled parturition. Am. J. Obstet. Gynecol. 133:723–732, 1979.

    Article  CAS  PubMed  Google Scholar 

  13. Beeson, J., and M. Martens. Variable intrauterine pressure catheter (IUPC) tracings with two catheters. Am. J. Obstet. Gynecol. 191:S151, 2004.

    Article  Google Scholar 

  14. Biewener, A. A., and T. J. Roberts. Muscle and tendon contributions to force, work, and elastic energy savings: a comparative perspective. Exerc. Sport Sci. Rev. 28:99–107, 2000.

    CAS  PubMed  Google Scholar 

  15. Birth Rate. 2020. At https://www.cia.gov/library/publications/the-world-factbook/fields/345.html.

  16. Buhimschi, C. S., I. A. Buhimschi, A. M. Malinow, J. N. Kopelman, and C. P. Weiner. Pushing in labor: performance and not endurance. Am. J. Obstet. Gynecol. 186:1339–1344, 2002.

    Article  PubMed  Google Scholar 

  17. Buhimschi, C. S., I. A. Buhimschi, A. Malinow, and C. P. Weiner. Use of McRoberts’ position during delivery and increase in pushing efficiency. Lancet 358:470–471, 2001.

    Article  CAS  PubMed  Google Scholar 

  18. Buttin, R., F. Zara, B. Shariat, and T. Redarce. A biomechanical model of the female reproductive system and the fetus for the realization of a childbirth virtual simulator. 2009. https://doi.org/10.1109/IEMBS.2009.5334085.

  19. Caldeyro-Barcia, R., H. Alvarez, and J. Poseiro. Normal and abnormal uterine contractility in labour. Triangle 2:41–52, 1955.

    Google Scholar 

  20. Chaudhry, S. R., and K. Chaudhry. Anatomy, Abdomen and Pelvis. Treasure Island (FL): Uterus Round Ligament, 2020.

    Google Scholar 

  21. Crankshaw, D. J., Y. M. O’Brien, D. A. Crosby, and J. J. Morrison. Maternal age and contractility of human myometrium in pregnancy. Reprod. Sci. 22:1229–1235, 2015.

    Article  CAS  PubMed  Google Scholar 

  22. Crankshaw, D. J., Y. M. O’Brien, D. A. Crosby, and J. J. Morrison. Maternal body mass index and spontaneous contractility of human myometrium in pregnancy. J. Perinatol. 37:492–497, 2017.

    Article  CAS  PubMed  Google Scholar 

  23. Crofts, J. F., D. Ellis, M. James, L. P. Hunt, R. Fox, and T. J. Draycott. Pattern and degree of forces applied during simulation of shoulder dystocia. Am. J. Obstet. Gynecol. 197(156):e1–6, 2007.

    Google Scholar 

  24. Cunningham, G. F., K. J. Leveno, S. L. Bloom, J. S. Dashe, B. L. Hoffman, B. M. Casey, and C. Y. Spong. Williams Obstetrics 25th Edition. 2018.

  25. Donati, F., F. Ferraris, L. Gagliardi, and S. Rustichelli. A descriptive method for automatically analysing uterine forces during labor. J. Perinat. Med. 4:242–254, 1976.

    Article  CAS  PubMed  Google Scholar 

  26. Ehrenberg, H. M., C. P. Durnwald, P. Catalano, and B. M. Mercer. The influence of obesity and diabetes on the risk of cesarean delivery. Am. J. Obstet. Gynecol. 191:969–974, 2004.

    Article  CAS  PubMed  Google Scholar 

  27. Emmerson, S., N. Young, A. Rosamilia, L. Parkinson, S. L. Edwards, A. V. Vashi, M. Davies-Tuck, J. White, K. Elgass, C. Lo, J. Arkwright, J. A. Werkmeister, and C. E. Gargett. Ovine multiparity is associated with diminished vaginal muscularis, increased elastic fibres and vaginal wall weakness: implication for pelvic organ prolapse. Sci. Rep. 7:45709, 2017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Evans, J. P., and P. C. Leppert. “Feeling the force” in reproduction: Mechanotransduction in reproductive processes. Connect. Tissue Res. 2016. https://doi.org/10.3109/03008207.2016.1146715.

    Article  PubMed  Google Scholar 

  29. Garfield, R. E., G. Saade, C. Buhimschi, I. Buhimschi, L. Shi, S. Q. Shi, and K. Chwalisz. Control and assessment of the uterus and cervix during pregnancy and labour. Hum. Reprod. Update 4:673–695, 1998.

    Article  CAS  PubMed  Google Scholar 

  30. Gee, S. E., and H. A. Frey. Contractions: Traditional concepts and their role in modern obstetrics. Semin. Perinatol. 44:151218, 2020.

    Article  PubMed  Google Scholar 

  31. Gherman, R., S. Chauhan, S. Clark, B. Gonik, M. Grimm, W. Grobman, J. Ouzounian, L. Yang, and J. Goldsmith. Neonatal Brachial Plexus Palsy. Washington, D.C.: American College of Obstetricians & Gynecologists, 2014.

    Google Scholar 

  32. Gonik, B., C. Stringer, and B. Held. An alternate maneuver for management of shoulder dystocia. Am. J. Obstet. Gynecol. 145:882–884, 1983.

    Article  CAS  PubMed  Google Scholar 

  33. Gonik, B., N. Zhang, and M. J. Grimm. Prediction of brachial plexus stretching during shoulder dystocia using a computer simulation model. Am. J. Obstet. Gynecol. 189:1168–1172, 2003.

    Article  PubMed  Google Scholar 

  34. Gough, G. W., N. J. Randall, E. S. Genevier, I. A. Sutherland, and P. J. Steer. Head-to-Cervix forces and their relationship to the outcome of labor. Obstet. Gynecol. 75:613–618, 1990.

    CAS  PubMed  Google Scholar 

  35. Grimm, M. J. Maternal endogenous forces and shoulder dystocia. Clin. Obstet. Gynecol. 59:820–829, 2016.

    Article  PubMed  Google Scholar 

  36. Grimm, M. J., and R. Costello. The biomechanics of birth-related brachial plexus injury. In: The Pathomechanimcs of Tissue Injury and Disease, and the Mechanophysiology of Healing, edited by A. Gefen. Kerala: Research Signpost, 2009, pp. 93–141.

    Google Scholar 

  37. Hashimoto, T., H. Furuya, M. Fujita, T. Yokokawa, H. Kino, K. Kokuho, and A. Tanaka. Biodynamics of the cervical dilatation in human labor. Acta Obstet. Gynaecol. Jpn. 32:1865–1872, 1980.

    CAS  Google Scholar 

  38. Hutchings, G., O. Williams, D. Cretoiu, and S. M. Ciontea. Myometrial interstitial cells and the coordination of myometrial contractility. J. Cell. Mol. Med. 13:4268–4282, 2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hutchison, J., H. Mahdy, and J. Hutchison. Stages of Labor. Treasure Island (FL): StatPearls, 2020.

    Google Scholar 

  40. Ingelman-Sundberg, A., and L. Lindgren. Intra-uterine measurement of pressure during labour; sources of error. J. Obstet. Gynaecol. Br. Emp. 62:629–635, 1955.

    Article  CAS  PubMed  Google Scholar 

  41. Ingelman-Sundberg, A., L. Lindgren, and T. Ljungström. An electronic method for intrauterine measurements of pressure during labour. J. Obstet. Gynaecol. Br. Emp. 60:322–326, 1953.

    Article  CAS  PubMed  Google Scholar 

  42. Jorge, S., S. Chang, J. J. Barzilai, P. Leppert, and J. H. Segars. Mechanical signaling in reproductive tissues: mechanisms and importance. Reprod. Sci. 21:1093–1107, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  43. LaRosa, P. S., H. Eswaran, H. Preissl, and A. Nehorai. Multiscale forward electromagnetic model of uterine contractions during pregnancy. BMC Med. Phys. 12:4–20, 2012.

    Article  Google Scholar 

  44. Lindgren, L. The causes of fœtal head moulding in labour. Acta Obstet. Gynecol. Scand. 30:46–62, 1960.

    Article  Google Scholar 

  45. Lindgren, C., and C. Symth. Measurement and interpretation of the pressures upon the cervix during normal and abnormal labour. J. Obstet. Gynaecol. Br. Emp. 68:901–915, 1961.

    Article  CAS  PubMed  Google Scholar 

  46. MacLennan, A. H. The role of the hormone relaxin in human reproduction and pelvic girdle relaxation. 1991.

  47. Manabe, Y., and N. Sagawa. Changes in the mechanical forces of cervical distention before and after rupture of the membranes. Am. J. Obstet. Gynecol. 147:667–671, 1983.

    Article  CAS  PubMed  Google Scholar 

  48. Manabe, Y., N. Sagawa, and T. Mori. Experimental evidence for the progress of labor with the increase in the force of cervical dilatation after rupture of the membranes. Am. J. Obstet. Gynecol. 152:696–704, 1985.

    Article  CAS  PubMed  Google Scholar 

  49. Matz, H. F. Uterodynamics and physiologic forces of labor. J. Am. Osteopath. Assoc. 54:136–140, 1954.

    CAS  PubMed  Google Scholar 

  50. Moolgaoker, A. S., S. O. Ahamed, and P. R. Payne. A comparison of different methods of instrumental delivery based on electronic measurements of compression and traction. Obstet. Gynecol. 54:299–309, 1979.

    CAS  PubMed  Google Scholar 

  51. Oláh, K. S., H. Gee, and J. S. Brown. The effect of cervical contractions on the generation of intrauterine pressure during the latent phase of labour. BJOG An Int. J. Obstet. Gynaecol. 101:341–343, 1994.

    Article  Google Scholar 

  52. Pavličev, M., R. Romero, and P. Mitteroecker. Evolution of the human pelvis and obstructed labor: new explanations of an old obstetrical dilemma. Am. J. Obstet. Gynecol. 222:3–16, 2020.

    Article  PubMed  Google Scholar 

  53. Pearse, W. H. Forceps versus spontaneous delivery. Clin. Obstet. Gynecol. 8:813–821, 1965.

    Article  CAS  PubMed  Google Scholar 

  54. Peisner, D. B. A device that measures the pulling force and vector of delivering a baby. Am. J. Obstet. Gynecol. 205(221):e1–7, 2011.

    Google Scholar 

  55. Poggi, S. H., R. H. Allen, C. Patel, S. H. Deering, J. C. Pezzullo, Y. Shin, and C. Y. Spong. Effect of epidural anaesthesia on clinician-applied force during vaginal delivery. Am. J. Obstet. Gynecol. 191:903–906, 2004.

    Article  PubMed  Google Scholar 

  56. Poggi, S. H., R. H. Allen, C. R. Patel, A. Ghidini, J. C. Pezzullo, and C. Y. Spong. Randomized trial of McRoberts versus lithotomy positioning to decrease the force that is applied to the fetus during delivery. Am. J. Obstet. Gynecol. 191:874–878, 2004.

    Article  PubMed  Google Scholar 

  57. Rempen, A., and M. Kraus. Measurement of head compression during labor: preliminary results. J. Perinat. Med. 19:115–120, 1991.

    Article  CAS  PubMed  Google Scholar 

  58. Ryan, G. A., S. M. Nicholson, D. J. Crankshaw, and J. J. Morrison. Maternal parity and functional contractility of human myometrium in vitro in the third trimester of pregnancy. J. Perinatol. 39:439–444, 2019.

    Article  PubMed  Google Scholar 

  59. Sharifimajd, B., C. J. Thore, and J. Stålhand. Simulating uterine contraction by using an electro-chemo-mechanical model. Biomech. Model. Mechanobiol. 15:497–510, 2016.

    Article  PubMed  Google Scholar 

  60. Smith, R. P. A brief history of intrauterine pressure measurement. Acta Obstet. Gynecol. Scand. 129:1–24, 1984.

    Article  CAS  Google Scholar 

  61. Smith, R., M. Imtiaz, D. Banney, J. W. Paul, and R. C. Young. Why the heart is like an orchestra and the uterus is like a soccer crowd. Am. J. Obstet. Gynecol. 213:181–185, 2015.

    Article  PubMed  Google Scholar 

  62. Steer, P. J., D. J. Little, N. L. Lewis, M. C. M. E. Kelly, and R. W. Beard. Uterine activity in induced labour. BJOG An Int. J. Obstet. Gynaecol. 82:433–441, 1975.

    Article  CAS  Google Scholar 

  63. Steinman, G. Forces affecting the dynamics of labor: a biophysical perspective. J. Reprod. Med. Obstet. Gynecol. 36:868–871, 1991.

    CAS  Google Scholar 

  64. Usha Kiran, T. S., S. Hemmadi, J. Bethel, and J. Evans. Outcome of pregnancy in a woman with an increased body mass index. BJOG 112:768–772, 2005.

    Article  CAS  PubMed  Google Scholar 

  65. Vacca, A. Vacuum-assisted delivery: an analysis of traction force and maternal and neonatal outcomes. Aust. New Zeal. J. Obstet. Gynaecol. 46:124–127, 2006.

    Article  Google Scholar 

  66. Vila Pouca, M. C. P., J. P. S. Ferreira, D. A. Oliveira, M. P. L. Parente, M. T. Mascarenhas, and R. M. Natal Jorge. Simulation of the uterine contractions and foetus expulsion using a chemo-mechanical constitutive model. Biomech. Model. Mechanobiol. 18:829–843, 2019.

    Article  CAS  PubMed  Google Scholar 

  67. Yochum, M., J. Laforêt, and C. Marque. An electro-mechanical multiscale model of uterine pregnancy contraction. Comput. Biol. Med. 77:182–194, 2016.

    Article  PubMed  Google Scholar 

  68. Yochum, M., J. Laforêt, and C. Marque. Multi-scale and multi-physics model of the uterine smooth muscle with mechanotransduction. Comput. Biol. Med. 93:17–30, 2018.

    Article  PubMed  Google Scholar 

  69. Young, R. C. Synchronization of regional contractions of human labor; direct effects of region size and tissue excitability. J. Biomech. 48:1614–1619, 2015.

    Article  PubMed  Google Scholar 

  70. Young, R. C. Mechanotransduction mechanisms for coordinating uterine contractions in human labor. Reproduction 152:R51–R61, 2016.

    Article  CAS  PubMed  Google Scholar 

  71. Young, R. C., and P. Barendse. Linking myometrial physiology to intrauterine pressure; how tissue-level contractions create uterine contractions of labor. PLoS Comput. Biol. 10:e1003850, 2014.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Zhang, J., L. Bricker, S. Wray, and S. Quenby. Poor uterine contractility in obese women. BJOG An Int. J. Obstet. Gynaecol. 114:343–348, 2007.

    Article  CAS  Google Scholar 

Download references

Conflict of interest

No benefits in any form have been or will be received from a commercial party related directly or indirectly to the subject of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele J. Grimm.

Additional information

Associate Editor Stefan M. Duma oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grimm, M.J. Forces Involved with Labor and Delivery—A Biomechanical Perspective. Ann Biomed Eng 49, 1819–1835 (2021). https://doi.org/10.1007/s10439-020-02718-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-020-02718-3

Keywords

Navigation