Skip to main content
Log in

Development of an efficient in-planta Agrobacterium-mediated transformation method for Iranian purslane (Portulaca oleracea L.) using sonication and vacuum infiltration

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Purslane (Portulaca oleracea L.), a valuable medicinal herb, is used as a source of pharmaceutical components such as flavonoids, alkaloids, fatty acids, terpenoids, and sterols. Regeneration of transgenic purslane plantlets from transformed cells is a time-consuming procedure and needs hard work. In this study, in-planta transformation of purslane, using sonication and vacuum infiltration, is reported. The purslane seeds were infected through Agrobacterium tumefaciens strain LBA4404 having the uidA gene on pBI121 vector. Effective selection of transformants was performed by supplementing MS media with 250 mg l−1 kanamycin. Several factors affecting the in-planta procedure including pre-culture duration, acetosyringone dose, sonication, and vacuum infiltration duration were investigated. The results demonstrated that the highest number of GUS-positive purslane plantlets was obtained when the pre-cultured seeds were sonicated and vacuum-infiltered for 2 min in agro-bacterial cell suspension, and then co-cultivated in MS media having 100 µM acetosyringone. The integration and expression of uidA gene in transgenic purslane was successfully corroborated by southern blot and GUS histochemical analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aminedi R, Dhatwalia D, Jain V, Bhattacharya R (2019) High efficiency in planta transformation of Indian mustard (Brassica juncea) based on spraying of floral buds. Plant Cell Tiss Org 138:299–237

    Article  Google Scholar 

  • Amoah B, Wu H, Sparks C, Jones H (2001) Factors influencing Agrobacterium-mediated transient expression of uidA in wheat inflorescence tissue. J Exp Bot 52:1135–1142

    Article  CAS  PubMed  Google Scholar 

  • Arun M, Subramanyam K, Mariashibu TS, Theboral J, Shivanandhan G, Manickavasagam M, Ganapathi A (2015) Application of sonication in combination with vacuum infiltration enhances the Agrobacterium-Mediated genetic transformation in indian soybean cultivars. Appl Biochem Biotech 175:2266–2287

    Article  CAS  Google Scholar 

  • Bakshi S, Sadhukhan A, Mishra S, Sahoo L (2011) Improved Agrobacterium-mediated transformation of cowpea via sonication and vacuum infiltration. Plant Cell Rep 30:2281–2292

    Article  CAS  PubMed  Google Scholar 

  • Beranová M, Rakouský S, Vávrová Z, Skalický T (2008) Sonication assisted Agrobacterium-mediated transformation enhances the transformation efficiency in flax (Linum usitatissimum L.). Plant Cell Tiss Org 94:253–259

    Article  Google Scholar 

  • Chen X, Equi R, Baxter H, Berk K, Han J, Agarwal S, Zale J (2010) A high-throughput transient gene expression system for switchgrass (Panicum virgatum L) seedlings. Biotechnol Biofuels 3:9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chopra R, Saini R (2012) Use of sonication and vacuum infiltration for Agrobacterium–mediated transformation of an Indian lentil (Lens culinaris Medik.) cultivar. Sci Hortic 143:127–134

    Article  CAS  Google Scholar 

  • de Oliveira MLP, Febres VJ, Costa MGC, Moore GA, Otoni WC (2009) High-efficiency Agrobacterium-mediated transformation of citrus via sonication and vacuum infiltration. Plant Cell Rep 28:387

    Article  CAS  PubMed  Google Scholar 

  • Dutt M, Grosser J (2009) Evaluation of parameters affecting Agrobacterium-mediated transformation of citrus. Plant Cell Tiss Org 98:331–340

    Article  CAS  Google Scholar 

  • Dutta I, Kottackal M, Tumimbang E, Tajima H, Zaid A, Blumwald E (2013) Sonication-assisted efficient Agrobacterium-mediated genetic transformation of the multipurpose woody desert shrub Leptadenia pyrotechnica. Plant Cell Tiss Org 112:289–301

    Article  CAS  Google Scholar 

  • González ER, de Andrade A, Bertolo AL, Lacerda GC, Carneiro RT, Defávari VAP, Labate MTV, Labate CA (2002) Production of transgenic Eucalyptus grandis x E. urophylla using the sonication-assisted Agrobacterium transformation (SAAT) system. Funct Plant Biol 29:97–102

    Article  PubMed  Google Scholar 

  • Holme IB, Brinch-Pedersen H, Lange M, Holm PB (2006) Transformation of barley (Hordeum vulgare L.) by Agrobacterium tumefaciens infection of in vitro cultured ovules. Plant Cell Rep 25:1325–1335

    Article  CAS  PubMed  Google Scholar 

  • Iranshahy M, Javadi B, Iranshahi M, Jahanbakhsh SP, Mahyari S, Hassani FV, Karimi G (2017) A review of traditional uses, phytochemistry and pharmacology of Portulaca oleracea L. J Ethnopharmacol 205:158–172

    Article  CAS  PubMed  Google Scholar 

  • Joung YH, Choi P-S, Kwon S-Y, Harn CH (2015) Plant transformation methods and applications current technologies in plant molecular breeding. Springer, London

    Google Scholar 

  • Kapildev G, Chinnathambi A, Sivanandhan G, Rajesh M, Vasudevan V, Mayavan S, Arun M, Jeyaraj M, Alharbi SA, Selvaraj N (2016) High-efficient Agrobacterium-mediated in planta transformation in black gram (Vigna mungo (L) Hepper). Acta Physiol Plant 38:205

    Article  Google Scholar 

  • Karthik S, Pavan G, Sathish S, Siva R, Kumar PS, Manickavasagam M (2018) Genotype-independent and enhanced in planta Agrobacterium tumefaciens-mediated genetic transformation of peanut [Arachis hypogaea (L.)]. Biotech 8:202

    Google Scholar 

  • Khemkladngoen N, Cartagena JA, Fukui K (2011) Physical wounding-assisted Agrobacterium-mediated transformation of juvenile cotyledons of a biodiesel-producing plant Jatropha curcas L. Plant Biotechnol Repo 5:235–243

    Article  Google Scholar 

  • Lai EM, Shih HW, Wen SR, Cheng MW, Hwang HH, Chiu SH (2006) Proteomic analysis of Agrobacterium tumefaciens response to the vir gene inducer acetosyringone. Proteomics 6:4130–4136

    Article  CAS  PubMed  Google Scholar 

  • Lin J, Zhou B, Yang Y, Mei J, Zhao X, Guo X, Huang X, Tang D, Liu X (2009) Piercing and vacuum infiltration of the mature embryo: a simplified method for Agrobacterium-mediated transformation of indica rice. Plant Cell Repo 28:1065–1074

    Article  CAS  Google Scholar 

  • Liu Z, Park B-J, Kanno A, Kameya T (2005) The novel use of a combination of sonication and vacuum infiltration in Agrobacterium-mediated transformation of kidney bean (Phaseolus vulgaris L) with lea gene. Mol Breeding 16:189

    Article  CAS  Google Scholar 

  • Maleki SS, Mohammadi K, Ji KS (2018) Study on factors influencing transformation efficiency in Pinus massoniana using Agrobacterium tumefaciens. Plant Cell Tiss Org 133:437–445

    Article  CAS  Google Scholar 

  • Manickavasagam M, Subramanyam K, Ishwarya R, Elayaraja D, Ganapathi A (2015) Assessment of factors influencing the tissue culture-independent Agrobacterium-mediated in planta genetic transformation of okra [Abelmoschus esculentus (L.) Moench]. Plant Cell Tiss Org 123:309–320

    Article  CAS  Google Scholar 

  • Mayavan S, Subramanyam K, Arun M, Rajesh M, Dev GK, Sivanandhan G, Jaganath B, Manickavasagam M, Selvaraj N, Ganapathi A (2013) Agrobacterium tumefaciens-mediated in planta seed transformation strategy in sugarcane. Plant Cell Rep 32:1557–1574

    Article  CAS  PubMed  Google Scholar 

  • Mayavan S, Subramanyam K, Jaganath B, Sathish D, Manickavasagam M, Ganapathi A (2015) Agrobacterium-mediated in planta genetic transformation of sugarcane setts. Plant Cell Rep 34:1835–1848

    Article  CAS  PubMed  Google Scholar 

  • Moghadam YA, Piri K, Bahramnejad B, Habibi P (2011) Hairy roots induction in purslane (Portulaca oleracea L.) using Agrobacterium rhizogenes. Planta Med 77:24

    Google Scholar 

  • Nanasato Y, Konagaya K-i, Okuzaki A, Tsuda M, Tabei Y (2013) Improvement of Agrobacterium-mediated transformation of cucumber (Cucumis sativus L.) by combination of vacuum infiltration and co-cultivation on filter paper wicks. Plant Biotechnol Repo 7:267–276

    Article  Google Scholar 

  • Park B-J, Liu Z, Kanno A, Kameya T (2005) Transformation of radish (Raphanus sativus L.) via sonication and vacuum infiltration of germinated seeds with Agrobacterium harboring a group 3 LEA gene from B. napus. Plant Cell Rep 24:494–500

    Article  CAS  PubMed  Google Scholar 

  • Pathak MR, Hamzah RY (2008) An effective method of sonication-assisted Agrobacterium-mediated transformation of chickpeas. Plant Cell Tiss Org 93:65–71

    Article  Google Scholar 

  • Peng WT, Lee YW, Nester EW (1998) The phenolic recognition profiles of the Agrobacterium tumefaciens VirA protein are broadened by a high level of the sugar binding protein ChvE. J Bacteriol 180:5632–5638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petropoulos S, Karkanis A, Martins N, Ferreira IC (2016) Phytochemical composition and bioactive compounds of common purslane (Portulaca oleracea L.) as affected by crop management practices. Trends Food Sci Tech 55:1–10

    Article  CAS  Google Scholar 

  • Pratheesh PT, Vineetha M, Kurup GM (2014) An efficient protocol for the Agrobacterium-mediated genetic transformation of microalga chlamydomonas reinhardtii. Mol Biotechnol 56:507–515

    Article  CAS  PubMed  Google Scholar 

  • Rai GK, Rai NP, Kumar S, Yadav A, Rathaur S, Singh M (2012) Effects of explant age, germination medium, pre-culture parameters, inoculation medium, pH, washing medium, and selection regime on Agrobacterium-mediated transformation of tomato. Vitro Cell Dev-Pl 48:565–578

    Article  CAS  Google Scholar 

  • Rani A, Panwar A, Sathe M, Kush A (2018) A modified in planta method of Agrobacterium-mediated transformation enhances the transformation efficiency in safflower (Carthamus tinctorius L.). J Plant Biochem Biot 27:272–283

    Article  CAS  Google Scholar 

  • Sambrook H (1989) Molecular cloning: a laboratory manual. Spring, NY

    Google Scholar 

  • Santarem E, Trick H, Essig J, Finer J (1998) Sonication-assisted Agrobacterium-mediated transformation of soybean immature cotyledons: optimization of transient expression. Plant Cell Rep 17:752–759

    Article  CAS  PubMed  Google Scholar 

  • Sedaghati B, Haddad R, Bandehpour M (2019) Efficient plant regeneration and Agrobacterium-mediated transformation via somatic embryogenesis in purslane (Portulaca oleracea L.): an important medicinal plant. Plant Cell Tiss Org Cult 136:231–245

    Article  CAS  Google Scholar 

  • Sedaghati B, Haddad R, Bandehpour M (2020) Transient expression of human serum albumin (HSA) in tobacco leaves. Mol Biol Rep 47(9):7169–7177

    Article  CAS  PubMed  Google Scholar 

  • Shah SH, Ali S, Jan SA, Ali GM (2015) Piercing and incubation method of in planta transformation producing stable transgenic plants by overexpressing DREB1A gene in tomato (Solanum lycopersicum Mill.). Plant Cell Tiss Org 120:1139–1157

    Article  CAS  Google Scholar 

  • Shrawat AK, Becker D, Lörz H (2007) Agrobacterium tumefaciens-mediated genetic transformation of barley (Hordeum vulgare L.). Plant Sci 172:281–290

    Article  CAS  Google Scholar 

  • Sivanandhan G, Dev GK, Theboral J, Selvaraj N, Ganapathi A, Manickavasagam M (2015) Sonication, vacuum infiltration and thiol compounds enhance the Agrobacterium-mediated transformation frequency of Withania somnifera (L.) Dunal. PLoS ONE 10:e0124693

    Article  PubMed  PubMed Central  Google Scholar 

  • Sivanandhan G, Arunachalam C, Vasudevan V, Kapildev G, Sulaiman AA, Selvaraj N, Ganapathi A, Lim YP (2016) Factors affecting Agrobacterium-mediated transformation in Hybanthus enneaspermus (L.) F. Muell Plant Biotechnol Rep 10:49–60

    Article  Google Scholar 

  • Solís JF, Mlejnek P, Studená K, Procházka S (2003) Application of sonication-assisted Agrobacterium-mediated transformation in Chenopodium rubrum L. Plant Soil Environ 49:255–260

    Article  Google Scholar 

  • Song L, Zhao D-g, Wu Y-j, Tian X-e (2009) A simplified seed transformation method for obtaining transgenic brassica napus plants. Agr Sci China 8:658–663

    Article  CAS  Google Scholar 

  • Subramanyam K, Subramanyam K, Sailaja K, Srinivasulu M, Lakshmidevi K (2011) Highly efficient Agrobacterium-mediated transformation of banana cv. Rasthali (AAB) via sonication and vacuum infiltration. Plant Cell Rep 30:425–436

    Article  CAS  PubMed  Google Scholar 

  • Subramanyam K, Rajesh M, Jaganath B, Vasuki A, Theboral J, Elayaraja D, Karthik S, Manickavasagam M, Ganapathi A (2013) Assessment of factors influencing the Agrobacterium-mediated in planta seed transformation of brinjal (Solanum melongena L.). Appl Biochem Biotech 171:450–468

    Article  CAS  Google Scholar 

  • Subramanyam K, Arunachalam C, Thaneswari RM, Sulaiman AA, Manickavasagam M, Ganapathi A (2015) Highly efficient Agrobacterium-mediated in planta genetic transformation of snake gourd (Tricosanthes cucumerina L.). Plant Cell Tiss Org 123:133–142

    Article  CAS  Google Scholar 

  • Supartana P, Shimizu T, Nogawa M, Shioiri H, Nakajima T, Haramoto N, Nozue M, Kojima M (2006) Development of simple and efficient in planta transformation method for wheat (Triticum aestivum L.) using Agrobacterium tumefaciens. J Biosci Bioeng 102:162–170

    Article  CAS  PubMed  Google Scholar 

  • Tague BW, Mantis J (2006) In planta Agrobacterium-mediated transformation by vacuum infiltration. In: Arabidopsis Protocols. Springer, London

    Book  Google Scholar 

  • Tang W (2003) Additional virulence genes and sonication enhance Agrobacterium tumefaciens-mediated loblolly pine transformation. Plant Cell Rep 21:555–562

    Article  CAS  PubMed  Google Scholar 

  • Yaghoubian Y, Siadat S, Telavat MM, Pirdashti H (2016) Quantify the response of purslane plant growth, photosynthesis pigments and photosystem II photochemistry to cadmium concentration gradients in the soil. Russ J Plant Physl 63:77–84

    Article  CAS  Google Scholar 

  • Yang J, Zhao B, Kim YB, Zhou C, Li C, Chen Y, Zhang H, Li CH (2013) Agrobacterium tumefaciens-mediated transformation of Phellodendron amurense Rupr. using mature-seed explants. Mol Biol Rep 40:281–288

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y-y, Zhang D-m, Zhong Y, Chang X-j, Hu M-l, Cheng C-z (2017) A simple and efficient in planta transformation method for pommelo (Citrus maxima) using Agrobacterium tumefaciens. Sci Hort 214:174–179

    Article  CAS  Google Scholar 

  • Ziemienowicz A (2014) Agrobacterium-mediated plant transformation: Factors, applications and recent advances. Agric Biotechnol 3:95–102

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Iranian National Science Foundation [grant number: 90003004].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Behnam Sedaghati or Raheem Haddad.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Human and animal rights

This investigation did not involve an experiment with human or animal research participants.

Additional information

Communicated by M. Stobiecki.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sedaghati, B., Haddad, R. & Bandehpour, M. Development of an efficient in-planta Agrobacterium-mediated transformation method for Iranian purslane (Portulaca oleracea L.) using sonication and vacuum infiltration. Acta Physiol Plant 43, 17 (2021). https://doi.org/10.1007/s11738-020-03185-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-020-03185-y

Keywords

Navigation