Skip to main content
Log in

Investigation of factors affecting the production of P. falciparum gametocytes in an Indian isolate

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

The fundamental requirement of every gametocytocidal drug screening assay is the sufficient numbers of healthy and viable gametocytes. The number of in vitro gametocytes grossly depends on the genetic capacity of parasites to produce gametocytes and on various environmental factors that are not precisely elucidated. In the present study, we tested multiple environmental factors that are reported, hypothesized, or predicted to influence gametocyte numbers. We observed that hypoxanthine and the use of freshly drawn human blood significantly enhance gametocytemia (p < 0.05) in vitro. However, other tested factors did not significantly affect gametocytemia. The addition of N-acetyl glucosamine to the culture enriched the gametocytes but d-sorbitol (5% v/v) in amounts and duration of incubation tested was unable to do so without negatively affecting the maturity and health of the gametocytes. Although the in vitro gametocyte production depends on the genetic capability of the parasite strain tested, various environmental factors also control the ability of the strain to produce gametocytes up to a certain extent. This is the first study testing the role of various environmental factors that might affect the gametocyte development in a gametocyte producing strain. The results presented herein will help in the optimization of gametocyte production procedures for various gametocytocidal drug screening assays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Data availability

All the data analysed in this study is contained in this manuscript.

References

  • Adjalley SH, Johnston GL, Li T, Eastman RT, Ekland EH, Eappen AG, Fidock DA (2011) Quantitative assessment of Plasmodium falciparum sexual development reveals potent transmission-blocking activity by methylene blue. Proceed Nat Acad Sci 108:47

    Google Scholar 

  • Baker DA (2010) Malaria gametocytogenesis. Mol Biochem Parasitol 172(2):57–65

    CAS  PubMed  PubMed Central  Google Scholar 

  • Batra N, Rajendran V, Agarwal D, Wadi I, Ghosh PC, Gupta RD, Nath M (2018) Synthesis and antimalarial evaluation of [1,2,3]-triazole-tethered sulfonamide–berberine hybrids. Chem Select 3(34):9790–9793

    CAS  Google Scholar 

  • Batra N, Rajendran V, Wadi I, Lathwal A, Dutta RK, Ghosh PC, Gupta RD, Nath M (2020) Synthesis, characterization, and antiplasmodial efficacy of sulfonamide-appended [1,2,3]-triazoles. J Heterocycl Chem 57:1625–1636

    CAS  Google Scholar 

  • Bennett TN, Kosar AD, Roepe PD (2005) Plasmodium falciparum strain GC-03 exhibits hyper-gametocytogenesis in partially hemoglobin depleted red blood cells. Mol Biochem Parasitol 139(2):261–265

    CAS  PubMed  Google Scholar 

  • Bhattacharyya KM, Kumar N (2013) Plasmodium falciparum gametocyte culture, purification, and gametogenesis. In: Moll K, Kaneko A, Scherf A, Wahlgren M (eds) Methods in malaria research, 6th edn. MR4/ATCC, Manassas, VA, USA

    Google Scholar 

  • Butcher G (1997) Antimalarial drugs and the mosquito transmission of Plasmodium. Int J Parasitol 27(9):975–987

    CAS  PubMed  Google Scholar 

  • Carter R, Miller LH (1979) Recent developments in production and purification of malaria antigens: evidence for environmental modulation of gametocytogenesis in Plasmodium falciparum in continuous culture. Bull World Health Organ 57:37–52

    PubMed  PubMed Central  Google Scholar 

  • Cassera MB, Zhang Y, Hazleton KZ, Schramm VL (2011) Purine and pyrimidine pathways as targets in Plasmodium falciparum. Curr Top Med Chem 11(16):2103–2115

    CAS  PubMed  PubMed Central  Google Scholar 

  • Duffy S, Loganathan S, Holleran JP, Avery VM (2016) Large-scale production of Plasmodium falciparum gametocytes for malaria drug discovery. Nat Protoc 11(5):976–992

    CAS  PubMed  Google Scholar 

  • Fivelman QL, McRobert L, Sharp S, Taylor CJ et al (2007) Improved synchronous production of Plasmodium falciparum gametocytes in vitro. Mol Biochem Parasitol 154(1):119–123

    CAS  PubMed  Google Scholar 

  • Gupta SK, Schulman S, Vanderberg JP (1985) Stage-dependent toxicity of N acetyl-glucosamine to Plasmodium falciparum. J Protozool 32:91–95

    CAS  PubMed  Google Scholar 

  • Hogh B, Dgedge M, Gamage-Mendis A, Barreto J, Butcher GA, Eling W, Sinden RE, Mendis C, Enosse SM, Thompson R, Begtrup K (1998) The differing impact of chloroquine and pyrimethamine/sulfadoxine upon the infectivity of malaria species to the mosquito vector. Am J Trop Med Hygiene 58(2):176–182

    CAS  Google Scholar 

  • Ifediba T, Vanderberg JP (1981) Complete in vitro maturation of Plasmodium falciparum gametocytes. Nature 294(5839):364–366

    CAS  PubMed  Google Scholar 

  • Jensen JB (1988) In vitro cultivation of malaria parasites: erythrocytic stages. In: Wernsdorfer WH, McGregor I (eds) Malaria. Principles and practice of malariology, vol 1. Churchill Livingstone, Edinburgh, UK, pp 307–320

    Google Scholar 

  • Jungery M, Pasvol G, Newbold CI, Weatherall DJ (1983) A lectin-like receptor is involved in invasion of erythrocytes by Plasmodium falciparum. Proceed Nat Acad Sci (USA) 80:1018–1022

    CAS  Google Scholar 

  • Kafsack B, Rovira-Graells N, Clark T, Bancells C, Crowley V, Campino S et al (2014) A transcriptional switch underlies commitment to sexual development in malaria parasites. Nature 507(7491):248–252

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar H, Wadi I, Devaraji V, Pillai CR, Ghosh SK (2019) A novel quinoline-appended chalcone derivative as potential Plasmodium falciparum gametocytocide. J Vect Borne Dis 56:189–199

    CAS  Google Scholar 

  • Lingnau A, Margos G, Maier WA, Seitz HM (1993) Serum-free cultivation of Plasmodium falciparum gametocytes in vitro. Parasitol Res 79(5):378–384

    CAS  PubMed  Google Scholar 

  • Lucantoni L, Duffy S, Adjalley SH, Fidock DA, Avery VM (2013) Identification of MMV malaria box inhibitors of plasmodium falciparum early-stage gametocytes using a luciferase-based high-throughput assay. Antimicrob Agents Chemother 57(12):6050–6062

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lucantoni L, Loganathan S, Avery VM (2017) The need to compare: assessing the level of agreement of three high-throughput assays against Plasmodium falciparum mature gametocytes. Scie Rep 7:1

    Google Scholar 

  • Miao J, Wang Z, Liu M, Parker D, Li X, Chen X, Cui L (2013) Plasmodium falciparum: generation of pure gametocyte culture by heparin treatment. Exp Parasitol 135(3):541–545

    CAS  PubMed  Google Scholar 

  • Miguel-Blanco C, Molina I, Bardera A et al (2017) Hundreds of dual-stage antimalarial molecules discovered by a functional gametocyte screen. Nat Commun 8:15160

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ono T, Nakabayashi T (1990) Gametocytogenesis induction by ammonium compounds in cultured Plasmodium falciparum. Int J Parasitol 20(5):615–618

    CAS  PubMed  Google Scholar 

  • Ono T, Ohnishi Y, Nagamune K, Kano M (1993) Gametocytogenesis induction by berenil in cultured Plasmodium falciparum. Exp Parasitol 77(1):74–78

    CAS  PubMed  Google Scholar 

  • Peatey CL, Leroy D, Gardiner DL, Trenholme KR (2012) Anti-malarial drugs: how effective are they against Plasmodium falciparum gametocytes? Malaria J 11(1):34

    Google Scholar 

  • Petmitr CP, Pongvilairat G, Ralph RK, Denny WA, Wilairat P (2001) Inhibitory effects of 9-anilinoacridines on Plasmodium falciparum gametocytes. Tropical Med Int Health 6:42–45

    Google Scholar 

  • Ponnudurai T, Lensen AH, Meis JF, Meuwissen JH (1986) Synchronization of Plasmodium falciparum gametocytes using an automated suspension culture system. Parasitology 93(Pt2):263–274

    PubMed  Google Scholar 

  • Puta C, Manyando C (1997) Enhanced gametocyte production in Fansidar-treated Plasmodium falciparum malaria patients: implications for malaria transmission control programmes. Tropical Med Int Health 2(3):227–229

    CAS  Google Scholar 

  • Quashie NB, Ranford-Cartwright LC, de Koning HP (2010) Uptake of purines in Plasmodium falciparum-infected human erythrocytes is mostly mediated by the human equilibrative nucleoside transporter and the human facilitative nucleobase transporter. Malaria J 9:36

    Google Scholar 

  • Recht J, Ashley EA, White NJ (2018) Use of primaquine and glucose-6-phosphate dehydrogenase deficiency testing: divergent policies and practices in malaria-endemic countries. PLOS Neglec Trop Dis 12:4

    Google Scholar 

  • Roncales M, Mas JV, Leroy D, Herreros E (2012) Comparison and optimization of different methods for the in vitro production of Plasmodium falciparum Gametocytes. J Parasitol Res 2012:927148. https://doi.org/10.1155/2012/927148

    Article  PubMed  PubMed Central  Google Scholar 

  • Ruwende C, Hill A (1998) Glucose-6-phosphate dehydrogenase deficiency and malaria. J Mol Med (Berl) 76(8):581–588

    CAS  Google Scholar 

  • Saliba KS, Jacobs-Lorena M (2012) Production of Plasmodium falciparum gametocytes in vitro. Methods Mol Biol (Clifton, NJ) 923:17–25

    CAS  Google Scholar 

  • Saul A, Graves P, Edser L (1990) Refractoriness of erythrocytes infected with Plasmodium falciparum gametocytes to lysis by sorbitol. Int J Parasitol 20(8):1095–1097

    CAS  PubMed  Google Scholar 

  • Schneweis S, Maier WA, Seitz HM (1991) Haemolysis of infected erythrocytes? A trigger for formation of Plasmodium falciparum gametocytes? Parasitol Res 77(5):458–460

    CAS  PubMed  Google Scholar 

  • Schuster FL (2002) Cultivation of plasmodium spp. Clin Microbiol Rev 15(3):355–364

    PubMed  PubMed Central  Google Scholar 

  • Shibeshi MA, Kifle ZD, Atnafie SA (2020) Antimalarial drug resistance and novel targets for antimalarial drug discovery. Infect Drug Resist 13:4047–4060

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sinden RE, Smalley ME (1979) Gametocytogenesis of Plasmodium falciparum in vitro: the cell-cycle. Parasitology 79(2):277–296

    CAS  PubMed  Google Scholar 

  • Sinha A, Hughes KR, Modrzynska KK, Otto TD, Pfander C, Dickens NJ, Waters AP (2014) A cascade of DNA-binding proteins for sexual commitment and development in Plasmodium. Nature 507(7491):253–257

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smalley M, Brown J (1981) Plasmodium falciparum gametocytogenesis stimulated by lymphocytes and serum from infected Gambian children. Trans R Soc Trop Med Hyg 75(2):316–317

    CAS  PubMed  Google Scholar 

  • Tekeste, Z., & Petros, B. (2010). The ABO blood group and Plasmodium falciparum malaria in Awash, Metehara and Ziway areas, Ethiopia. Malaria Journal, 9(1).

  • Trager W (2005) What triggers the gametocyte pathway in Plasmodium falciparum? Trends Parasitol 21(6):262–264

    PubMed  Google Scholar 

  • Trager W, Gill GS (1992) Enhanced gametocyte formation in young erythrocytes by Plasmodium falciparum in vitro. J Protozool 39:429–432

    CAS  PubMed  Google Scholar 

  • Trager W, Gill GS, Lawrence C, Nagel RL (1999) Plasmodium falciparum: enhanced gametocyte formation in vitro in reticulocyte-rich blood. Exp Parasitol 91(2):115–118

    CAS  PubMed  Google Scholar 

  • Wadi I, Anvikar A, Nath M, Pillai C, Sinha A, Valecha N (2018a) Critical examination of approaches exploited to assess the effectiveness of transmission-blocking drugs for malaria. Fut Med Chem 10(22):2619–2639

    CAS  Google Scholar 

  • Wadi I, Pillai CR, Anvikar AR, Sinha A, Nath M, Valecha N (2018b) Methylene blue induced morphological deformations in Plasmodium falciparum gametocytes: implications for transmission-blocking. Malaria J 17:1

    Google Scholar 

  • Wadi I, Nath M, Anvikar A, Singh P, Sinha A (2019a) Recent advances in transmission-blocking drugs for malaria elimination. Fut Med Chem 11(23):3047–3088

    CAS  Google Scholar 

  • Wadi I, Prasad D, Batra N, Srivastava K, Anvikar A, Valecha N, Nath M (2019b) Targeting asexual and sexual blood stages of human malaria parasite P. falciparum with 7-chloroquinoline-based [1,2,3]-triazoles. ChemMedChem 14:484–493

    CAS  PubMed  Google Scholar 

  • Wadi I, Singh P, Nath M, Anvikar A, Sinha A (2020) Malaria transmission-blocking drugs: implications and future perspectives. Fut Med Chem 12(11):1071–1101

    CAS  Google Scholar 

  • Warrell DA (2017) Essential malariology, 4th edn. CRC Press, Oxford, UK

    Google Scholar 

  • World Health Organization (2019) World malaria report 2019. World Health Organization. https://apps.who.int/iris/handle/10665/330011. License: CCBY-NC-SA 3.0 IGO

  • Young JA, Fivelman QL, Blair PL et al (2005) The Plasmodium falciparum sexual development transcriptome: a microarray analysis using ontology-based pattern identification. Mol Biochem Parasitol 143:67–79

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge the staff of Malaria Parasite Bank (ICMR-NIMR, New Delhi) for providing technical support. IW was supported by University Grants Commission and ND by Women Scientist Scheme-A, Department of Science and Technology, Government of India. Director ICMR-NIMR is acknowledged for infrastructural and administrative support.

Funding

This study was not funded by external organization or government agency.

Author information

Authors and Affiliations

Authors

Contributions

IW, AS, and MN have contributed to the study conception and design. Material preparation, data collection and analysis were performed by IW, ND, and AS. The first draft of the manuscript was written by IW. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Mahendra Nath or Abhinav Sinha.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest in the publication.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wadi, I., Deora, N., Nath, M. et al. Investigation of factors affecting the production of P. falciparum gametocytes in an Indian isolate. 3 Biotech 11, 55 (2021). https://doi.org/10.1007/s13205-020-02586-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-020-02586-7

Keywords

Navigation