1932

Abstract

Null hypothesis significance testing (NHST) is the most common statistical framework used by scientists, including archaeologists. Owing to increasing dissatisfaction, however, Bayesian inference has become an alternative to these methods. In this article, we review the application of Bayesian statistics to archaeology. We begin with a simple example to demonstrate the differences in applying NHST and Bayesian inference to an archaeological problem. Next, we formally define NHST and Bayesian inference, provide a brief historical overview of their development, and discuss the advantages and limitations of each method. A review of Bayesian inference and archaeology follows, highlighting the applications of Bayesian methods to chronological, bioarchaeological, zooarchaeological, ceramic, lithic, and spatial analyses. We close by considering the future applications of Bayesian statistics to archaeological research.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anthro-102317-045834
2018-10-21
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/anthro/47/1/annurev-anthro-102317-045834.html?itemId=/content/journals/10.1146/annurev-anthro-102317-045834&mimeType=html&fmt=ahah

Literature Cited

  1. Acabado S. 2009. A Bayesian approach to dating agricultural terraces: a case from the Philippines. Antiquity 83:801–14
    [Google Scholar]
  2. Aitchison T, Ottaway B, Al-Ruzaiza AS 1991. Summarizing a group of 14C dates on the historical time scale: with a worked example from the Late Neolithic of Bavaria. Antiquity 65:108–16
    [Google Scholar]
  3. Alberti G. 2013. A Bayesian 14C chronology of Early and Middle Bronze Age in Sicily. Towards an independent absolute dating. J. Archaeol. Sci. 40:2502–14
    [Google Scholar]
  4. Arakawa F, Nicholson C, Rasic J 2013. The consequences of social processes: aggregate populations, projectile point accumulation, and subsistence patterns in the American Southwest. Am. Antiq. 78:147–65
    [Google Scholar]
  5. Arias V. 2013. Application of GIS and spatial data modeling to archaeology: a case study in the American Southwest PhD Diss. Dep. Anthropol., Univ. N.M. Albuquerque:
  6. Athens JS, Rieth TM, Dye TS 2014. A paleoenvironmental and archaeological model-based age estimate for the colonization of Hawai'i. Am. Antiq. 79:144–55
    [Google Scholar]
  7. Bayes T. 1763. An essay towards solving a problem in the doctrine of chances. Philos. Trans. 53:370–418
    [Google Scholar]
  8. Bayliss A. 2009. Rolling out revolution: using radiocarbon dating in archaeology. Radiocarbon 51:123–47
    [Google Scholar]
  9. Bayliss A. 2015. Quality in Bayesian chronological models in archaeology. World Archaeol 47:677–700
    [Google Scholar]
  10. Bayliss A, Brock F, Farid S, Hodder I, Southon J, Taylor RE 2015. Getting to the bottom of it all: a Bayesian approach to dating the start of Çatalhöyük. J. World Prehist. 28:1–26
    [Google Scholar]
  11. Bayliss A, Ramsey CB, McCormac FG 1997. Dating Stonehenge. Proc. Br. Acad. 92:39–59
    [Google Scholar]
  12. Béland SL, McLeod BA, Martin J, Martin GM, Darling JD, Frasier TR 2018. Species composition of First Nation whaling hunts in the Clayoquot Sound region of Vancouver Island as estimated through genetic analyses. J. Archaeol. Sci. Rep. 17:235–41
    [Google Scholar]
  13. Benjamin DJ, Berger JO, Johannesson M, Nosek BA, Wagenmakers E-J et al. 2018. Redefine statistical significance. Nat. Hum. Behav. 2:6–10
    [Google Scholar]
  14. Beramendi-Orosco LE, Gonzalez-Hernandez G, Urrutia-Fucugauchi J, Manzanilla LR, Soler-Arechalde AM et al. 2009. High-resolution chronology for the Mesoamerican urban center of Teotihuacan derived from Bayesian statistics of radiocarbon and archaeological data. Quat. Res. 71:99–107
    [Google Scholar]
  15. Binford LR. 1964. A consideration of archaeological research design. Am. Antiq. 29:425–41
    [Google Scholar]
  16. Bonneau A, Brock F, Higham T, Pearce DG, Pollard AM 2011. An improved pretreatment protocol for radiocarbon dating black pigments in San rock art. Radiocarbon 53(3):419–28
    [Google Scholar]
  17. Borradaile GJ. 2003. Viscous magnetization, archaeology and Bayesian statistics of small samples from Israel and England. Geophys. Res. Lett. 30:35
    [Google Scholar]
  18. Bronk Ramsey C. 1994. Analysis of chronological information and radiocarbon calibration: the program OxCal. Archaeol. Comput. Newsl. 41:e16
    [Google Scholar]
  19. Bronk Ramsey C. 2008. Radiocarbon dating: revolutions in understanding. Archaeometry 50:249–75
    [Google Scholar]
  20. Bronk Ramsey C, Dee MW, Rowland JM, Higham TF, Harris SA et al. 2010. Radiocarbon-based chronology for dynastic Egypt. Science 328:1554–57
    [Google Scholar]
  21. Bronk Ramsey C, Schulting R, Goriunova OI, Bazaliiskii VI, Weber AW 2014. Analyzing radiocarbon reservoir offsets through stable nitrogen isotopes and Bayesian modeling: a case study using paired human and faunal remains from the Cis-Baikal region, Siberia. Radiocarbon 56:789–99
    [Google Scholar]
  22. Brotherton P, Haak W, Templeton J, Brandt G, Soubrier J et al. 2013. Neolithic mitochondrial haplogroup H genomes and the genetic origins of Europeans. Nat. Commun. 4:1764
    [Google Scholar]
  23. Buck C. 1993. The provenancing of archaeological ceramics: a Bayesian approach. Computing the Past: Computer Applications and Quantitative Methods in Archaeology J Andersen, T Madsen, I Scollar 293–301 Aarhus, Den.: Aarhus Univ. Press
    [Google Scholar]
  24. Buck CE, Bard E 2007. A calendar chronology for Pleistocene mammoth and horse extinction in North America based on Bayesian radiocarbon calibration. Quat. Sci. Rev. 26:2031–35
    [Google Scholar]
  25. Buck CE, Cavanagh WG, Litton CD 1996. Bayesian Approach to Interpreting Archaeological Data West Sussex, UK: Wiley
  26. Buck CE, Christen JA, James GN 1999. BCal: an on-line Bayesian radiocarbon calibration tool. Internet Archaeol. 7: https://doi.org/10.11141/ia.7.1
    [Crossref] [Google Scholar]
  27. Buck CE, Kenworthy JB, Litton CD, Smith AFM 1991. Combining archaeological and radiocarbon information: a Bayesian approach to calibration. Antiquity 65:808–21
    [Google Scholar]
  28. Buck CE, Litton CD, Smith AF 1992. Calibration of radiocarbon results pertaining to related archaeological events. J. Archaeol. Sci. 19:497–512
    [Google Scholar]
  29. Burley DV, Edinborough K 2014. Discontinuity in the Fijian archaeological record supported by a Bayesian radiocarbon model. Radiocarbon 56:295–303
    [Google Scholar]
  30. Cadwallader L, Torres SA, O'Connell TC, Pullen AG, Beresford-Jones DG 2015. Dating the dead: new radiocarbon dates from the Lower Ica Valley, south coast Peru. Radiocarbon 57:765–73
    [Google Scholar]
  31. Canning S. 2003. Site unseen: archaeology, cultural resource management, planning and predictive modelling in the Melbourne metropolitan area PhD Thesis Sch. Eur. Hist. Stud., La Trobe Univ. Bundoora:
  32. Capuzzo G, Barceló JA 2015. Cultural changes in the second millennium BC: a Bayesian examination of radiocarbon evidence from Switzerland and Catalonia. World Archaeol 47:622–41
    [Google Scholar]
  33. Carlson DL. 2017. Quantitative Methods in Archaeology Using R Cambridge, UK/New York: Cambridge Univ. Press
  34. Carpenter B, Gelman A, Hoffman MD, Lee D, Goodrich B et al. 2017. Stan: a probabilistic programming language. J. Stat. Softw. 76:1 https://doi.org/10.18637/jss.v076.i01
    [Crossref] [Google Scholar]
  35. Cherkinsky A, Di Lernia S 2013. Bayesian approach to 14C dates for estimation of long-term archaeological sequences in arid environments: the Holocene site of Takarkori Rockshelter, Southwest Libya. Radiocarbon 55:771–82
    [Google Scholar]
  36. Chirikure S, Pollard M, Manyanga M, Bandama F 2013. A Bayesian chronology for Great Zimbabwe: re-threading the sequence of a vandalised monument. Antiquity 87:854–72
    [Google Scholar]
  37. Clarke DL. 1968. Analytical Archaeology London: Methuen
  38. Coltrain JB, Janetski JC 2013. The stable and radio-isotope chemistry of southeastern Utah Basketmaker II burials: dietary analysis using the linear mixing model SISUS, age and sex patterning, geolocation and temporal patterning. J. Archaeol. Sci. 40:4711–30
    [Google Scholar]
  39. Cooper DB, Willis A, Andrews S, Baker J, Cao Y et al. 2001. Assembling virtual pots from 3D measurements of their fragments. Proceedings of the 2001 Conference on Virtual Reality, Archeology, and Cultural Heritage D Arnold, A Chalmers, D Fellner 241–54 New York: ACM
    [Google Scholar]
  40. Coqueugniot H, Weaver TD, Houët F 2010. Brief communication: a probabilistic approach to age estimation from infracranial sequences of maturation. Am. J. Phys. Anthropol. 142:655–64
    [Google Scholar]
  41. Cowgill GL. 1989. Formal approaches in archaeology. Archaeological Thought in America CC Lamberg-Karlovsky 74–88 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  42. Cowgill GL. 1993. Distinguished lecture in archeology: beyond criticizing New Archeology. Am. Anthropol. 95:551–73
    [Google Scholar]
  43. Cowgill GL. 2001. Past, present, and future of quantitative methods in United States archaeology. Computing Archaeology for Understanding the Past. CAA 2000. Computer Applications and Quantitative Methods in Archaeology Z Stančič, T Veljanovski 35–40 Oxford, UK: Archaeopress
    [Google Scholar]
  44. Cowgill GL. 2015. Some things I hope you will find useful even if statistics isn't your thing. Annu. Rev. Anthropol. 44:1–14
    [Google Scholar]
  45. Culleton BJ, Prufer KM, Kennett DJ 2012. A Bayesian AMS 14C chronology of the classic Maya center of Uxbenká, Belize. J. Archaeol. Sci. 39:1572–86
    [Google Scholar]
  46. Dee M, Wengrow D, Shortland A, Stevenson A, Brock F et al. 2013. An absolute chronology for early Egypt using radiocarbon dating and Bayesian statistical modelling. Proc. R. Soc. A 469:20131395
    [Google Scholar]
  47. Diez DM, Barr CD, Çetinkaya-Rundel M 2017. OpenIntro Statistics North Charleston, SC: CreateSpace
  48. Dodge DR. 2011. A molecular approach to the Neanderthal extinction: the applicability of a Bayesian programme to the analysis of Neanderthals PhD Thesis Dep. Archaeol., Univ Sheffield
  49. Edinborough K. 2005a. Weapons of maths instruction: a thousand years of technological stasis in arrowheads from the South Scandinavian Middle Mesolithic. Pap. Inst. Archaeol. 16:50–58
    [Google Scholar]
  50. Edinborough KSA. 2005b. Evolution of bow-arrow technology PhD Thesis Univ. Coll London:
  51. Faith JT, Tryon CA, Peppe DJ, Fox DL 2013. The fossil history of Grévy's zebra (Equus grevyi) in equatorial East Africa. J. Biogeogr. 40:359–69
    [Google Scholar]
  52. Fernandes R. 2016. A simple(R) model to predict the source of dietary carbon in individual consumers. Archaeometry 58:500–12
    [Google Scholar]
  53. Fernandes R, Grootes P, Nadeau M-J, Nehlich O 2015. Quantitative diet reconstruction of a Neolithic population using a Bayesian mixing model (FRUITS): the case study of Ostorf (Germany). Am. J. Phys. Anthropol. 158:325–40
    [Google Scholar]
  54. Fernández-López de Pablo J, Barton CM 2015. Bayesian estimation dating of lithic surface collections. J. Archaeol. Method Theory 22:2559–83
    [Google Scholar]
  55. Finkelstein I, Piasetzky E 2010. Radiocarbon dating the Iron Age in the Levant: a Bayesian model for six ceramic phases and six transitions. Antiquity 84:374–85
    [Google Scholar]
  56. Finkelstein I, Piasetzky E 2015. Radiocarbon dating Khirbet Qeiyafa and the Iron I–IIA phases in the She-phelah: methodological comments and a Bayesian model. Radiocarbon 57:891–907
    [Google Scholar]
  57. Fisher DC. 1987. Mastodont procurement by Paleoindians of the Great Lakes region: hunting or scavenging. Evol. Hum. Hunting309–421
    [Google Scholar]
  58. Fisher RA. 1925. Statistical Methods for Research Workers Edinburgh/London: Oliver and Boyd
  59. Fisher RA. 1929. The statistical method in psychical research. Proc. Soc. Psychical Res. 39:189–92
    [Google Scholar]
  60. Fisher RA. 1935. Letter to the Editor: statistical tests. Nature 136:474
    [Google Scholar]
  61. Fletcher M, Lock GR 2005. Digging Numbers: Elementary Statistics for Archaeologists Oxford, UK: Oxford Press
  62. Ford A, Clarke KC, Raines G 2009. Modeling settlement patterns of the late classic Maya civilization with Bayesian methods and geographic information systems. Ann. Assoc. Am. Geogr. 99:496–520
    [Google Scholar]
  63. Fu Q, Meyer M, Gao X, Stenzel U, Burbano HA et al. 2013a. DNA analysis of an early modern human from Tianyuan Cave, China. PNAS 110:2223–27
    [Google Scholar]
  64. Fu Q, Mittnik A, Johnson PL, Bos K, Lari M et al. 2013b. A revised timescale for human evolution based on ancient mitochondrial genomes. Curr. Biol. 23:553–59
    [Google Scholar]
  65. Gearey BR, Marshall P, Hamilton D 2009. Correlating archaeological and palaeoenvironmental records using a Bayesian approach: a case study from Sutton Common, South Yorkshire, England. J. Archaeol. Sci. 36:1477–87
    [Google Scholar]
  66. Gelman A. 2017. The failure of null hypothesis significance testing when studying incremental changes, and what to do about it. Pers. Soc. Psychol. Bull. 44:16–23
    [Google Scholar]
  67. Gelman A, Carlin JB, Stern HS, Dunson DB, Vehtari A, Rubin DB 2014. Bayesian Data Analysis Boca Raton: CRC Press
  68. Gill J. 1999. The insignificance of null hypothesis significance testing. Political Res. Q. 52:647–74
    [Google Scholar]
  69. Goring S, Williams J, Blois JL, Jackson ST, Paciorek CJ et al. 2012. Deposition times in the northeastern United States during the Holocene: establishing valid priors for Bayesian age models. Quat. Sci. Rev. 48:54–60
    [Google Scholar]
  70. Gowland RL, Chamberlain AT 2002. A Bayesian approach to ageing perinatal skeletal material from archaeological sites: implications for the evidence for infanticide in Roman-Britain. J. Archaeol. Sci. 29:677–85
    [Google Scholar]
  71. Greco C, Palamarczuk V 2014. Strategy for radiocarbon chronological assessment of ceramic styles: an example from Prehispanic northwestern Argentina. Radiocarbon 56:1093–106
    [Google Scholar]
  72. Griffiths S. 2014. A Bayesian radiocarbon chronology of the early Neolithic of Yorkshire and Humberside. Archaeol. J. 171:2–29
    [Google Scholar]
  73. Hamilton WD, Haselgrove C, Gosden C 2015. The impact of Bayesian chronologies on the British Iron Age. World Archaeol 47:642–60
    [Google Scholar]
  74. Harris JA, Marean CW, Ogle K, Thompson J 2017. The trajectory of bone surface modification studies in paleoanthropology and a new Bayesian solution to the identification controversy. J. Hum. Evol. 110:69–81
    [Google Scholar]
  75. Heuzé Y, Cardoso HF 2008. Testing the quality of nonadult Bayesian dental age assessment methods to juvenile skeletal remains: the Lisbon collection children and secular trend effects. Am. J. Phys. Anthropol. 135:275–83
    [Google Scholar]
  76. Hey G, Bayliss A, Boyle A 1999. Iron Age inhumation burials at Yarnton, Oxfordshire. Antiquity 73:551–62
    [Google Scholar]
  77. Higham C, Higham T 2009. A new chronological framework for prehistoric Southeast Asia, based on a Bayesian model from Ban Non Wat. Antiquity 83:125–44
    [Google Scholar]
  78. Higham T, van der Plicht J, Bronk Ramsey C, Bruins HJ, Robinson M, Levy TE 2005. Radiocarbon dating of the Khirbat-en Nahas site (Jordan) and Bayesian modeling of the results. The Bible and Radiocarbon Dating: Archaeology, Text and Science T Levy, T Higham 164–78 New York: Routledge
    [Google Scholar]
  79. Hill JB, Devitt M, Sergeyeva M 2006. Predictive modeling and cultural resource preservation in Santa Cruz county, Arizona Work. Pap., Cent. Desert Archaeol. Tucson: https://www.archaeologysouthwest.org/pdf/Hilletal_scnha_pred_mod.pdf
  80. Holdaway S, Shiner J, Fanning P 2004. Hunter-gatherers and the archaeology of discard behavior: an analysis of surface stone artifacts from Sturt National Park, western New South Wales, Australia. Asian Perspect 43:34–72
    [Google Scholar]
  81. Hoppa RD, Vaupel JW 2008. The Rostock Manifesto for paleodemography: the way from stage to age. Paleodemography: Age Distributions from Skeletal Samples RD Hoppa, JW Vaupel 1–8 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  82. Horsburgh KA, Prost S, Gosling A, Stanton J-A, Rand C, Matisoo-Smith EA 2013. The genetic diversity of the Nguni breed of African Cattle (Bos spp.): complete mitochondrial genomes of haplogroup T1. PLOS ONE 8:e71956
    [Google Scholar]
  83. Kadane JB, Hastorf CA 1987. Bayesian paleoethnobotany Pap., Dep. Stat., Carnegie-Mellon Univ.
  84. Kammonen J, Sundell T, Moltchanova E, Pesonen P, Oinonen M et al. 2012. Bayesian spatial analysis of archaeological finds and radiocarbon dates: an example from Finland 4000–3500 cal BC. Revive the Past. Computer Applications and Quantitative Methods in Archaeology (CAA). Proceedings of the 39th International Conference, Beijing, April 12–16 M Zhou, I Romanowska, Z Wu, P Xu, P Verhagen 318–25 Amsterdam: Pallas
    [Google Scholar]
  85. Kirkinen T. 1999. GIS-assisted data analysis-finding meanings in complex spatial data sets. New Techniques for Old Times. CAA98. Computer Applications and Quantitative Methods in Archaeology. Proceedings of the 26th Conference, Barcelona, March 1998 JA Barceló, I Briz, A Vila 255–58 Oxford, UK: Archaeopress
    [Google Scholar]
  86. Konigsberg LW, Frankenberg SR 1992. Estimation of age structure in anthropological demography. Am. J. Phys. Anthropol. 89:235–56
    [Google Scholar]
  87. Konigsberg LW, Frankenberg SR 1994. Paleodemography: “Not quite dead. .” Evol. Anthropol. 3:92–105
    [Google Scholar]
  88. Konigsberg LW, Frankenberg SR 2002. Deconstructing death in paleodemography. Am. J. Phys. Anthropol. 117:297–309
    [Google Scholar]
  89. Konigsberg LW, Hens SM, Jantz LM, Jungers WL 1998. Stature estimation and calibration: Bayesian and maximum likelihood perspectives in physical anthropology. Am. J. Phys. Anthropol. 107:65–92
    [Google Scholar]
  90. Kopperl RE, Taylor AK, Miss CJ, Ames KM, Hodges CM 2015. The Bear Creek Site (45KI839), a Late Pleistocene–Holocene transition occupation in the Puget Sound Lowland, King County, Washington. PaleoAmerica 1:116–20
    [Google Scholar]
  91. Kraitsek S, Baskerville B, Ho SY, Gongora J 2013. Australian and Pacific contributions to the genetic diversity of Norfolk Island feral chickens. BMC Genet 14:91
    [Google Scholar]
  92. Larson G, Albarella U, Dobney K, Rowley-Conwy P, Schibler J et al. 2007. Ancient DNA, pig domestication, and the spread of the Neolithic into Europe. PNAS 104:15276–81
    [Google Scholar]
  93. Lee S, Bronk Ramsey C, Mazar A 2013. Iron Age chronology in Israel: results from modeling with a trapezoidal Bayesian framework. Radiocarbon 55:731–40
    [Google Scholar]
  94. Lehmann EL. 1959. Testing Statistical Hypotheses New York: Wiley
  95. Levy TE, Higham T, Najjar M 2006. Response to van der Steen & Bienkowski. Antiquity 80:3–5
    [Google Scholar]
  96. Litton C, Leese M 1990. Some statistical problems arising in radiocarbon calibration. Comput. Appl. Quant. Methods Archaeol. 565:101–9
    [Google Scholar]
  97. Long T, Taylor D 2015. A revised chronology for the archaeology of the lower Yangtze, China, based on Bayesian statistical modelling. J. Archaeol. Sci. 63:115–21
    [Google Scholar]
  98. Lull V, Micó R, Rihuete-Herrada C, Risch R 2013. Funerary practices and kinship in an Early Bronze Age society: a Bayesian approach applied to the radiocarbon dating of Argaric double tombs. J. Archaeol. Sci. 40:4626–34
    [Google Scholar]
  99. Mannino MA, Thomas KD 2001. Intensive Mesolithic exploitation of coastal resources? Evidence from a shell deposit on the Isle of Portland (Southern England) for the impact of human foraging on populations of intertidal rocky shore molluscs. J. Archaeol. Sci. 28:1101–14
    [Google Scholar]
  100. Mays S. 2012. An investigation of age‐related changes at the acetabulum in 18th–19th century AD adult skeletons from Christ Church Spitalfields, London. Am. J. Phys. Anthropol. 149:485–92
    [Google Scholar]
  101. McElreath R. 2016. Statistical Rethinking: A Bayesian Course with Examples in R and Stan Boca Raton: CRC Press/Taylor & Francis
  102. McShane BB, Gal D 2017. Statistical significance and the dichotomization of evidence. J. Am. Stat. Assoc. 112:885–95
    [Google Scholar]
  103. Meiri M, Huchon D, Bar-Oz G, Boaretto E, Horwitz LK et al. 2013. Ancient DNA and population turnover in southern Levantine pigs—signature of the sea peoples migration. Sci. Rep. 3:3035
    [Google Scholar]
  104. Meiri M, Lister AM, Collins MJ, Tuross N, Goebel T et al. 2014. Faunal record identifies Bering isthmus conditions as constraint to end-Pleistocene migration to the New World. Proc. R. Soc. B 281:20132167
    [Google Scholar]
  105. Mellars P, Gori KC, Carr M, Soares PA, Richards MB 2013. Genetic and archaeological perspectives on the initial modern human colonization of southern Asia. PNAS 110:10699–704
    [Google Scholar]
  106. Millard AR 2006. Bayesian analysis of ESR dates, with application to Border Cave. Quat. Geochronol. 1(2):159–66
    [Google Scholar]
  107. Millard A, Gowland R 2002. A Bayesian approach to the estimation of the age of humans from tooth development and wear. Archeol. Calcolatori 13:197–210
    [Google Scholar]
  108. Myers OH. 1950. Some Applications of Statistics to Archaeology Cairo: Serv. Antiq. Egypte
  109. Nagaoka T, Abe M, Shimatani K 2012. Estimation of mortality profiles from non-adult human skeletons in Edo-period Japan. Anthropol. Sci. 120:115–28
    [Google Scholar]
  110. Nagaoka T, Sawada J, Hirata K 2008. Did the Jomon people have a short lifespan? Evidence from the adult age-at-death estimation based on the auricular surface of the ilium. Anthropol. Sci. 116:161–69
    [Google Scholar]
  111. Nagarajan M, Nimisha K, Kumar S 2015. Mitochondrial DNA variability of domestic river buffalo (Bubalus bubalis) populations: genetic evidence for domestication of river buffalo in Indian subcontinent. Genome Biol. Evol. 7:1252–59
    [Google Scholar]
  112. Naylor JC, Smith AFM 1988. An archaeological inference problem. J. Am. Stat. Assoc. 83:588–95
    [Google Scholar]
  113. Neyman J. 1934. On the two different aspects of the representative method: the method of stratified sampling and the method of purposive selection. J. R. Stat. Soc. 97:558–625
    [Google Scholar]
  114. Neyman J. 1937. Outline of a theory of statistical estimation based on the classical theory of probability. Philos. Trans. R. Soc. A 236:333–80
    [Google Scholar]
  115. Neyman J, Pearson ES 1933. On the problem of the most efficient tests of statistical hypotheses. Philos. Trans. R. Soc. A 231:289–337
    [Google Scholar]
  116. Nomokonova T, Losey RJ, Ol'ga IG, Novikov AG, Weber AW 2015. A 9,000 year history of seal hunting on Lake Baikal, Siberia: the zooarchaeology of Sagan-Zaba II. PLOS ONE 10:e0128314
    [Google Scholar]
  117. Nunn PD, Petchey F 2013. Bayesian re-evaluation of Lapita settlement in Fiji: radiocarbon analysis of the Lapita occupation at Bourewa and nearby sites on the Rove Peninsula, Viti Levu Island. J. Pac. Archaeol. 4:21–34
    [Google Scholar]
  118. Ortman SG, Varien MD, Gripp TL 2007. Empirical Bayesian methods for archaeological survey data: an application from the Mesa Verde region. Am. Antiq. 72:2241–72
    [Google Scholar]
  119. Otárola-Castillo E, Torquato MG, Hawkins HC, James E, Harris JA et al. 2018. Differentiating between cutting actions on bone using 3D geometric morphometrics and Bayesian analyses with implications to human evolution. J. Archaeol. Sci. 89:56–67
    [Google Scholar]
  120. Papageorgiou I, Liritzis I 2007. Multivariate mixture of normals with unknown number of components: an application to cluster Neolithic ceramics from Aegean and Asia Minor using portable XRF. Archaeometry 49:795–813
    [Google Scholar]
  121. Pearson K. 1922. On the χ2 test of goodness of fit. Biometrika 14:186–91
    [Google Scholar]
  122. Pesonen P, Oinonen M, Carpelan C, Onkamo P 2012. Early Subneolithic ceramic sequences in eastern Fennoscandia—a Bayesian approach. Radiocarbon 54:661–76
    [Google Scholar]
  123. Petrie CA, Torrence R 2008. Assessing the effects of volcanic disasters on human settlement in the Willaumez Peninsula, Papua New Guinea: a Bayesian approach to radiocarbon calibration. Holocene 18:729–44
    [Google Scholar]
  124. Pluckhahn TJ, Thompson VD, Cherkinsky A 2015. The temporality of shell-bearing landscapes at Crystal River, Florida. J. Anthropol. Archaeol. 37:19–36
    [Google Scholar]
  125. Quiles A, Aubourg E, Berthier B, Delqué-Količ E, Pierrat-Bonnefois G et al. 2013. Bayesian modelling of an absolute chronology for Egypt's 18th Dynasty by astrophysical and radiocarbon methods. J. Archaeol. Sci. 40:423–32
    [Google Scholar]
  126. R Core Team 2018. R: a language and environment for statistical computing. R Found. Stat. Comput. https://www.R-project.org/
    [Google Scholar]
  127. Rasheed NA, Nordin MJ 2015. A survey of computer methods in reconstruction of 3D archaeological pottery objects. Int. J. Adv. Res. 3:712–14
    [Google Scholar]
  128. Ray N, Wegmann D, Fagundes NJ, Wang S, Ruiz-Linares A, Excoffier L 2009. A statistical evaluation of models for the initial settlement of the American continent emphasizes the importance of gene flow with Asia. Mol. Biol. Evol. 27:337–45
    [Google Scholar]
  129. Rhodes E, Bronk Ramsey C, Outram Z, Batt C, Willis L et al. 2003. Bayesian methods applied to the interpretation of multiple OSL dates: high precision sediment ages from Old Scatness Broch excavations, Shetland Isles. Quat. Sci. Rev. 22:1231–44
    [Google Scholar]
  130. Riede F, Edinborough K 2012. Bayesian radiocarbon models for the cultural transition during the Allerød in southern Scandinavia. J. Archaeol. Sci. 39:744–56
    [Google Scholar]
  131. Rieth TM, Mills PR, Lundblad SP, Morrison AE, Johnson A 2013. Variation in lithic sources utilized by late pre-contact elites in Kona, Hawai‘i Island. Hawaiian Archaeol 13:103–30
    [Google Scholar]
  132. Rissech C, López-Costas O, Turbón D 2013. Humeral development from neonatal period to skeletal maturity—application in age and sex assessment. Int. J. Legal Med. 127:201–12
    [Google Scholar]
  133. Robert C, Casella G 2011. A short history of Markov Chain Monte Carlo: subjective recollections from incomplete data. 26102–15
  134. Sacks BN, Brown SK, Stephens D, Pedersen NC, Wu J-T, Berry O 2013. Y chromosome analysis of dingoes and Southeast Asian village dogs suggests a Neolithic continental expansion from Southeast Asia followed by multiple Austronesian dispersals. Mol. Biol. Evol. 30:1103–18
    [Google Scholar]
  135. Salsburg D. 2001. The Lady Tasting Tea: How Statistics Revolutionized Science in the Twentieth Century New York: Macmillan
  136. Savage SH. 1998. AMS radiocarbon dates from the Predynastic Egyptian cemetery, N7000, at Naga-ed-Dêr. J. Archaeol. Sci. 25:235–49
    [Google Scholar]
  137. Séguy I, Caussinus H, Courgeau D, Buchet L 2013. Estimating the age structure of a buried adult population: a new statistical approach applied to archaeological digs in France. Am. J. Phys. Anthropol. 150:170–83
    [Google Scholar]
  138. Shapiro B, Drummond AJ, Rambaut A, Wilson MC, Matheus PE et al. 2004. Rise and fall of the Beringian steppe bison. Science 306:1561–65
    [Google Scholar]
  139. Shapiro B, Hofreiter M 2012. Ancient DNA Methods and Protocols New York: Humana
  140. Smith NG, Levy TE 2008. The Iron Age pottery from Khirbat en-Nahas, Jordan: a preliminary study. Bull. Am. Schools Orient. Res. 2008:35241–91
    [Google Scholar]
  141. Spaulding AC. 1953. Statistical techniques for the discovery of artifact types. Am. Antiq. 28:305–313
    [Google Scholar]
  142. Speller CF, Burley DV, Woodward RP, Yang DY 2013. Ancient mtDNA analysis of early 16th century Caribbean cattle provides insight into founding populations of New World creole cattle breeds. PLOS ONE 8:e69584
    [Google Scholar]
  143. Stan Dev. Team 2018. RStan: the R interface to Stan. R package version 2.17.3. http://mc-stan.org/
  144. Tocheri MW, Dupras TL, Sheldrick P, Molto JE 2005. Roman period fetal skeletons from the east cemetery (Kellis 2) of Kellis, Egypt. Int. J. Osteoarchaeol. 15:326–41
    [Google Scholar]
  145. Tsutaya T, Naito YI, Ishida H, Yoneda M 2014. Carbon and nitrogen isotope analyses of human and dog diet in the Okhotsk culture: perspectives from the Moyoro site, Japan. Anthropol. Sci. 122:89–99
    [Google Scholar]
  146. Unkel I, Kromer B, Reindel M, Wacker L, Wagner G 2007. A chronology of the pre-Columbian Paracas and Nasca cultures in South Peru Based on AMS 14C dating. Radiocarbon 49:551–64
    [Google Scholar]
  147. van Holst Pellekaan S 2013. Genetic evidence for the colonization of Australia. Quat. Int. 285:44–56
    [Google Scholar]
  148. Warmuth V, Manica A, Eriksson A, Barker G, Bower M 2013. Autosomal genetic diversity in non‐breed horses from eastern Eurasia provides insights into historical population movements. Anim. Genet. 44:53–61
    [Google Scholar]
  149. Weber A. 2012. Patterns of cemetery use at Kurma XI: Bayesian approach to the examination of radiocarbon dates. Kurma XI, A Middle Holocene Hunter-Gatherer Cemetery on Lake Baikal, Siberia: Archaeological and Osteological Materials 6 MA Weber, HG McKenzie, AR Lieverse, OI Goriunova 141–72 Edmonton: Univ. Alberta, Can. Circumpolar Inst. Press
    [Google Scholar]
  150. Wilde S, Timpson A, Kirsanow K, Kaiser E, Kayser M et al. 2014. Direct evidence for positive selection of skin, hair, and eye pigmentation in Europeans during the last 5,000 y. PNAS 111:4832–37
    [Google Scholar]
  151. Willis AR, Cooper DB 2004. Bayesian assembly of 3d axially symmetric shapes from fragments. Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004 New York: IEEE
    [Google Scholar]
  152. Wohlfarth B, Blaauw M, Davies SM, Andersson M, Wastegård S et al. 2006. Constraining the age of Lateglacial and early Holocene pollen zones and tephra horizons in southern Sweden with Bayesian probability methods. J. Quat. Sci. 21:321–34
    [Google Scholar]
  153. Wolfhagen J, Price MD 2017. A probabilistic model for distinguishing between sheep and goat postcranial remains. J. Archaeol. Sci. Rep. 12:625–31
    [Google Scholar]
  154. Xie G, Feng S, Feng X, Zhu J, Yan L, Li L 2009. Dating ancient Chinese celadon porcelain by neutron activation analysis and Bayesian classification. Atomic Energy Sci. Technol. 43:561–65
    [Google Scholar]
  155. Yue X-P, Li R, Xie W-M, Xu P, Chang T-C et al. 2013. Phylogeography and domestication of Chinese swamp buffalo. PLOS ONE 8:e56552
    [Google Scholar]
  156. Zeidler JA, Buck CE, Litton CD 1998. Integration of archaeological phase information and radiocarbon results from the Jama River Valley, Ecuador: a Bayesian approach. Latin Am. Antiq. 9:160–79
    [Google Scholar]
/content/journals/10.1146/annurev-anthro-102317-045834
Loading
/content/journals/10.1146/annurev-anthro-102317-045834
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error