Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter January 11, 2021

A highly efficient and green approach for the synthesis of pyrimido[4,5-b]quinolines using N,N-diethyl-N-sulfoethanaminium chloride

  • Abdolkarim Zare EMAIL logo and Manije Dianat

Abstract

A highly efficient and green protocol for the synthesis of pyrimido[4,5-b]quinolines has been described. The one-pot multicomponent reaction of dimedone with arylaldehydes and 6-amino-1,3-dimethyluracil in the presence of N,N-diethyl-N-sulfoethanaminium chloride ([Et3N–SO3H][Cl]) as an ionic liquid (IL) catalyst under solvent-free conditions afforded the mentioned compounds in high yields and short reaction times. Our protocol is superior to many of the reported protocols in terms of two or more of these factors: the reaction times, yields, conditions (solvent-free versus usage of organic solvents), temperature and catalyst amount.


Corresponding author: Abdolkarim Zare, Department of Chemistry, Payame Noor University, P. O. Box 19395‐3697, Tehran, I. R. Iran, E-mail:

Funding source: Research Council of Payame Noor University

Acknowledgment

The authors acknowledge Research Council of Payame Noor University for the support of this work.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was supported by Research Council of Payame Noor University.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Nargund, L. V. G., Badiger, V. V., Yarnal, S. M. J. Pharm. Sci. 1992, 81, 365; https://doi.org/10.1002/jps.2600810416.Search in Google Scholar

2. Nair, V., Chi, G., Shu, Q., Julander, J., Smee, D. F. Bioorg. Med. Chem. Lett. 2009, 19, 1425; https://doi.org/10.1016/j.bmcl.2009.01.031.Search in Google Scholar

3. Kostova, I., Atanasov, P. Y. Curr. Org. Chem. 2017, 21, 2096; https://doi.org/10.2174/1385272820666161025152154.Search in Google Scholar

4. Kim, S.-M., Lee, M., Lee, S. Y., Lee, S.-M., Kim, E. J., Kim, J. S. Ann, J., Lee, J., Lee, J. Eur. J. Med. Chem. 2018, 145, 413; https://doi.org/10.1016/j.ejmech.2017.12.095.Search in Google Scholar

5. Xia, Y., Yang, Z. Y., Xia, P., Bastow, K. F., Tachibana, Y., Kuo, S. C., Hamel, E., Hackl, T., Lee, K. H. J. Med. Chem. 1998, 41, 1155; https://doi.org/10.1021/jm9707479.Search in Google Scholar

6. Chen, Y. L., Chen, I. L., Tzeng, C. C., Wang, T. C. Helv. Chim. Acta 2000, 83, 989; https://doi.org/10.1002/(sici)1522-2675(20000510)83:5<989::aid-hlca989>3.0.co;2-e.10.1002/(SICI)1522-2675(20000510)83:5<989::AID-HLCA989>3.0.CO;2-ESearch in Google Scholar

7. Alagarsamy, V. Pharmazie 2004, 59, 753.Search in Google Scholar

8. Nqoro, X., Tobeka, N., Aderibigbe, B. A. Molecules 2017, 22, 2268; https://doi.org/10.3390/molecules22122268.Search in Google Scholar

9. Althuis, T. H., Moore, P. F., Hess, H. J. J. Med. Chem. 1979, 22, 44; https://doi.org/10.1021/jm00187a011.Search in Google Scholar

10. Ali, H. I., Tomita, K., Akaho, E., Kunishima, M., Kawashima, Y., Yamagishi, T., Ikeya, H., Nagamatsu, T. Eur. J. Med. Chem. 2008, 43, 1376; https://doi.org/10.1016/j.ejmech.2007.10.011.Search in Google Scholar

11. Abdel-Gawad, S. M., El-Gaby, M. S. A., Heiba, H. I., Ali, H. M., Ghorab, M. M. J. Chin. Chem. Soc. 2005, 52, 1227; https://doi.org/10.1002/jccs.200500177.Search in Google Scholar

12. Joshi, A. A., Viswanathan, C. L. Bioorg. Med. Chem. Lett. 2006, 16, 2613; https://doi.org/10.1016/j.bmcl.2006.02.038.Search in Google Scholar PubMed

13. El-Gazzar, A. B. A., El-Enany, M. M., Mahmoud, M. N. Bioorg. Med. Chem. 2008, 16, 3261; https://doi.org/10.1016/j.bmc.2007.12.012.Search in Google Scholar PubMed

14. Jalili, F., Zarei, M., Zolfigol, M. A., Rostamnia, S., Moosavi-Zare, A. R. Microporous Mesoporous Mater. 2020, 294, 109865; https://doi.org/10.1016/j.micromeso.2019.109865.Search in Google Scholar

15. Shirini, F., Safarpoor, M., Langarudi, N., Daneshvar, N., Jamasbi, N., Irankhah-Khanghah, M. J. Mol. Struct. 2018, 1161, 366; https://doi.org/10.1016/j.molstruc.2018.02.069.Search in Google Scholar

16. Nemati, F., Saeedirad, R. Chin. Chem. Lett. 2013, 24, 370; https://doi.org/10.1016/j.cclet.2013.02.018.Search in Google Scholar

17. Verma, G. K., Raghuvanshi, K., Kumar, R., Singh, M. S. Tetrahedron Lett. 2012, 53, 399; https://doi.org/10.1016/j.tetlet.2011.11.047.Search in Google Scholar

18. Zare, A., Dianat, M., Eskandari, M. M. New J. Chem. 2020, 44, 4736; https://doi.org/10.1039/c9nj06393e.Search in Google Scholar

19. Shi, D.-Q., Ni, S.-N., Yang, F., Shi, J.-W., Dou, G.-L., Li, X.-Y., Wang, X.-S., Ji, S.-J. J. Heterocycl. Chem. 2008, 45, 693; https://doi.org/10.1002/jhet.5570450637.Search in Google Scholar

20. Shirini, F., Safarpoor Nikoo Langarudi, M., Daneshvar, N., Mashhadinezhad, M., Nabinia, N. J. Mol. Liq. 2017, 243, 302; https://doi.org/10.1016/j.molliq.2017.07.080.Search in Google Scholar

21. Khurana, J. M., Chaudhary, A., Nand, B., Lumb, A. Tetrahedron Lett. 2012, 53, 3018; https://doi.org/10.1016/j.tetlet.2012.04.001.Search in Google Scholar

22. Zare, A., Lotfifar, N., Dianat, M. J. Mol. Struct. 2020, 1211, 128030; https://doi.org/10.1016/j.molstruc.2020.128030.Search in Google Scholar

23. Thangavel, R., Kannan, A. G., Ponraj, R., Thangavel, V., Kim, D.-W., Lee, Y.-S. J. Power Sources 2018, 383, 102; https://doi.org/10.1016/j.jpowsour.2018.02.037.Search in Google Scholar

24. Gras, M., Papaiconomou, N., Schaeffer, N., Chainet, E., Tedjar, F., Coutinho, J. A. P., Billard, I. Angew. Chem. Int. Ed. 2018, 57, 1563; https://doi.org/10.1002/anie.201711068.Search in Google Scholar PubMed

25. Yang, L., Jiang, G., Shi, Y., Yang, X. Energy Fuels 2017, 31, 4308; https://doi.org/10.1021/acs.energyfuels.7b00272.Search in Google Scholar

26. Iqbal, B., Muhammad, N., Jamal, A., Ahmad, P., Khan, Z. U. H., Rahim, A., Khan, A. S., Gonfa, G., Iqbal, J. J. Mol. Liq. 2017, 243, 720; https://doi.org/10.1016/j.molliq.2017.08.101.Search in Google Scholar

27. Egorova, K. S., Gordeev, E. G., Ananikov, V. P. Chem. Rev. 2017, 117, 7132; https://doi.org/10.1021/acs.chemrev.6b00562.Search in Google Scholar PubMed

28. Shekouhy, M., Hasaninejad, A. Ultrason. Sonochem. 2012, 19, 307; https://doi.org/10.1016/j.ultsonch.2011.07.011.Search in Google Scholar PubMed

29. Aguilar-Elguezabal, A., de la Torre-Sáenz, L., Román-Aguirre, M., Álvarez-Contreras, L. Sustain. Chem. Pharm. 2020, 15, 100207; https://doi.org/10.1016/j.scp.2019.100207.Search in Google Scholar

30. Zare, A., Karami, M. Z. Naturforsch. 2019, 74b, 641.10.1515/znb-2019-0064Search in Google Scholar

31. Vekariya, R. L. J. Mol. Liq. 2017, 227, 44; https://doi.org/10.1016/j.molliq.2016.11.123.Search in Google Scholar

32. Nikpassand, M., Zare Fekri, L. Chem. Methodol. 2020, 4, 437; https://doi.org/10.33945/sami/chemm.2020.4.6.Search in Google Scholar

33. Nusaibah Masri, A., Abdul Mutalib, M. I., Yahya, W. Z. N., Aminuddin, N. F., Leveque, J. M. Ultrason. Sonochem. 2020, 60, 104732; https://doi.org/10.1016/j.ultsonch.2019.104732.Search in Google Scholar PubMed

34. Zare, A., Moosavi-Zare, A. R., Merajoddin, M., Zolfigol, M. A., Hekmat-Zadeh, T., Hasaninejad, A., Khazaei, A., Mokhlesi, M., Khakyzadeh, V., Derakhshan-Panah, F., Beyzavi, M. H., Rostami, E., Arghoon, A., Roohandeh, R. J. Mol. Liq. 2012, 167, 69; https://doi.org/10.1016/j.molliq.2011.12.012.Search in Google Scholar

35. Irannejad-Gheshlaghchaei, N., Zare, A., Sajadikhah, S. S., Banaei, A. Res. Chem. Intermed. 2018, 44, 6253; https://doi.org/10.1007/s11164-018-3488-8.Search in Google Scholar

36. Rezayati, S., Hajinasiri, R., Hossaini, Z., Abbaspour, S. Asian J. Green Chem. 2018, 2, 268.Search in Google Scholar

37. Gu, Y. Green Chem. 2012, 14, 2091; https://doi.org/10.1039/c2gc35635j.Search in Google Scholar

38. Khanivar, R., Zare, A. Z. Naturforsch. 2018, 73b, 635; https://doi.org/10.1515/znb-2018-0075.Search in Google Scholar

39. Kordnezhadian, R., Shekouhy, M., Khalafi-Nezhad, A. New J. Chem. 2019, 43, 18559; https://doi.org/10.1039/c9nj04714j.Search in Google Scholar

40. Sayahi, M. H., Gorjizadeh, M., Meheiseni, M., Sayyahi, S. Z. Naturforsch. 2020, 75b, 269; https://doi.org/10.1515/znb-2019-0155.Search in Google Scholar

41. Karami, M., Zare, A. Z. Naturforsch. 2018, 73b, 289; https://doi.org/10.1515/znb-2018-0001.Search in Google Scholar

42. Singh, M. S., Chowdhury, S. RSC Adv. 2012, 2, 4547; https://doi.org/10.1039/c2ra01056a.Search in Google Scholar

43. Janitabar-Darzi, S., Abdolmohammadi, S. Z. Naturforsch. 2019, 74b, 559; https://doi.org/10.1515/znb-2019-0059.Search in Google Scholar

44. Kordnezhadian, R., Shekouhy, M., Karimian, S., Khalafi-Nezhad, A. J. Catal. 2019, 380, 91; https://doi.org/10.1016/j.jcat.2019.10.020.Search in Google Scholar

Received: 2020-05-26
Accepted: 2020-10-05
Published Online: 2021-01-11
Published in Print: 2021-02-23

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 19.4.2024 from https://www.degruyter.com/document/doi/10.1515/znb-2020-0098/html
Scroll to top button