Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure and mechanism of the proton-driven motor that powers type 9 secretion and gliding motility

Abstract

Three classes of ion-driven protein motors have been identified to date: ATP synthase, the bacterial flagellar motor and a proton-driven motor that powers gliding motility and the type 9 protein secretion system in Bacteroidetes bacteria. Here, we present cryo-electron microscopy structures of the gliding motility/type 9 protein secretion system motors GldLM from Flavobacterium johnsoniae and PorLM from Porphyromonas gingivalis. The motor is an asymmetric inner membrane protein complex in which the single transmembrane helices of two periplasm-spanning GldM/PorM proteins are positioned inside a ring of five GldL/PorL proteins. Mutagenesis and single-molecule tracking identify protonatable amino acid residues in the transmembrane domain of the complex that are important for motor function. Our data provide evidence for a mechanism in which proton flow results in rotation of the periplasm-spanning GldM/PorM dimer inside the intra-membrane GldL/PorL ring to drive processes at the bacterial outer membrane.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Both gliding motility and type 9 protein export require GldLM and the PMF.
Fig. 2: Structure of the F. johnsoniae GldLMʹ complex.
Fig. 3: Structure of the complete GldLM motor complex.
Fig. 4: Functional analysis of protonatable residues in the transmembrane domain of GldLM.
Fig. 5: The structural asymmetry of the GldLMʹ complex leads to important differences in residue environments between chains.
Fig. 6: Model for the mechanism of coupling proton flow to GldM rotation in the GldLM motor.

Similar content being viewed by others

Data availability

The cryo-EM volumes have been deposited in the Electron Microscopy Data Bank (EMDB) with accession codes EMD-10893 and EMD-10894, and the coordinates have been deposited in the Protein Data Bank (PDB) with accession code 6YS8. Source data are provided with the paper.

References

  1. Guo, H. & Rubinstein, J. L. Cryo-EM of ATP synthases. Curr. Opin. Struct. Biol. 52, 71–79 (2018).

    Article  CAS  PubMed  Google Scholar 

  2. Walker, J. E. The ATP synthase: the understood, the uncertain and the unknown. Biochem. Soc. Trans. 41, 1–16 (2013).

    Article  CAS  PubMed  Google Scholar 

  3. Sowa, Y. & Berry, R. M. Bacterial flagellar motor. Q. Rev. Biophys. 41, 103–132 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Kojima, S. Dynamism and regulation of the stator, the energy conversion complex of the bacterial flagellar motor. Curr. Opin. Microbiol. 28, 66–71 (2015).

    Article  CAS  PubMed  Google Scholar 

  5. Deme, J. C. et al. Structures of the stator complex that drives rotation of the bacterial flagellum. Nat. Microbiol. 5, 1553–1564 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. McBride, M. J. Bacteroidetes gliding motility and the type IX secretion system. Microbiol. Spectr. 7, PSIB-0002-2018 (2019).

    Article  Google Scholar 

  7. Nakane, D., Sato, K., Wada, H., McBride, M. J. & Nakayama, K. Helical flow of surface protein required for bacterial gliding motility. Proc. Natl Acad. Sci. USA 110, 11145–11150 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ridgway, H. F. Source of energy for gliding motility in Flexibacter polymorphus: effects of metabolic and respiratory inhibitors on gliding movement. J. Bacteriol. 131, 544–556 (1977).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Shrivastava, A., Lele, P. P. & Berg, H. C. A rotary motor drives Flavobacterium gliding. Curr. Biol. 25, 338–341 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shrivastava, A., Roland, T. & Berg, H. C. The screw-like movement of a gliding bacterium is powered by spiral motion of cell-surface adhesins. Biophys. J. 111, 1008–1013 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nelson, S. S., Bollampalli, S. & McBride, M. J. SprB is a cell surface component of the Flavobacterium johnsoniae gliding motility machinery. J. Bacteriol. 190, 2851–2857 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Shrivastava, A. & Berg, H. C. A molecular rack and pinion actuates a cell-surface adhesin and enables bacterial gliding motility. Sci. Adv. 6, eaay6616 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Shrivastava, A., Johnston, J. J., van Baaren, J. M. & McBride, M. J. Flavobacterium johnsoniae GldK, GldL, GldM, and SprA are required for secretion of the cell surface gliding motility adhesins SprB and RemA. J. Bacteriol. 195, 3201–3212 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Vincent, M. S. et al. Characterization of the Porphyromonas gingivalis type IX secretion trans-envelope PorKLMNP core complex. J. Biol. Chem. 292, 3252–3261 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Leone, P. et al. Type IX secretion system PorM and gliding machinery GldM form arches spanning the periplasmic space. Nat. Commun. 9, 429 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Sato, K. et al. A protein secretion system linked to bacteroidete gliding motility and pathogenesis. Proc. Natl Acad. Sci. USA 107, 276–281 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. Lasica, A. M., Ksiazek, M., Madej, M. & Potempa, J. The type IX secretion system (T9SS): highlights and recent insights into its structure and function. Front. Cell Infect. Microbiol 7, 215 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  18. de Diego, I. et al. The outer-membrane export signal of Porphyromonas gingivalis type IX secretion system (T9SS) is a conserved C-terminal β-sandwich domain. Sci. Rep. 6, 23123 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kulkarni, S. S., Zhu, Y., Brendel, C. J. & McBride, M. J. Diverse C-terminal sequences involved in Flavobacterium johnsoniae protein secretion. J. Bacteriol. 199, e00884-16 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Lauber, F., Deme, J. C., Lea, S. M. & Berks, B. C. Type 9 secretion system structures reveal a new protein transport mechanism. Nature 564, 77–82 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nijeholt, J. A. L. A. & Driessen, A. J. M. The bacterial Sec-translocase: structure and mechanism. Philos. Trans. R. Soc. B Biol. Sci. 367, 1016–1028 (2012).

    Article  Google Scholar 

  22. Gorasia, D. G. et al. Structural insights into the PorK and PorN components of the Porphyromonas gingivalis type IX secretion system. PLoS Pathog. 12, e1005820 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Gorasia, D. G. et al. Structure and organisation of the type IX secretion system. Preprint at bioRxiv https://doi.org/10.1101/2020.05.13.094771 (2020).

  24. Rhodes, R. G., Samarasam, M. N., Van Groll, E. J. & McBride, M . J. Mutations in Flavobacterium johnsoniae sprE result in defects in gliding motility and protein secretion. J. Bacteriol. 193, 5322–5327 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sato, K., Okada, K., Nakayama, K. & Imada, K. PorM, a core component of bacterial type IX secretion system, forms a dimer with a unique kinked-rod shape. Biochem. Biophys. Res. Commun. 532, 114–119 (2020).

    Article  CAS  PubMed  Google Scholar 

  26. von Heijne, G. & Gavel, Y. Topogenic signals in integral membrane proteins. Eur. J. Biochem. 174, 671–678 (1988).

    Article  Google Scholar 

  27. Turner, R. D., Hurd, A. F., Cadby, A., Hobbs, J. K. & Foster, S. J. Cell wall elongation mode in Gram-negative bacteria is determined by peptidoglycan architecture. Nat. Commun. 4, 1496 (2013).

    Article  PubMed  Google Scholar 

  28. Turner, R. D., Mesnage, S., Hobbs, J. K. & Foster, S. J. Molecular imaging of glycan chains couples cell-wall polysaccharide architecture to bacterial cell morphology. Nat. Commun. 9, 1263 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Koraimann, G. Lytic transglycosylases in macromolecular transport systems of Gram-negative bacteria. Cell. Mol. Life Sci. 60, 2371–2388 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Scheurwater, E. M. & Burrows, L. L. Maintaining network security: how macromolecular structures cross the peptidoglycan layer. FEMS Microbiol. Lett. 318, 1–9 (2011).

    Article  CAS  PubMed  Google Scholar 

  31. Vincent, M. S., Durand, E. & Cascales, E. The PorX response regulator of the Porphyromonas gingivalis PorXY two-component system does not directly regulate the type IX secretion genes but binds the PorL subunit. Front. Cell. Infect. Microbiol. 6, 96 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Celia, H. et al. Cryo-EM structure of the bacterial Ton motor subcomplex ExbB–ExbD provides information on structure and stoichiometry. Commun. Biol. 2, 358 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  33. McBride, M. J. & Kempf, M. J. Development of techniques for the genetic manipulation of the gliding bacterium Cytophaga johnsonae. J. Bacteriol. 178, 583–590 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Liu, J., McBride, M. J. & Subramaniam, S. Cell surface filaments of the gliding bacterium Flavobacterium johnsoniae revealed by cryo-electron tomography. J. Bacteriol. 189, 7503–7506 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Agarwal, S., Hunnicutt, D. W. & McBride, M. J. Cloning and characterization of the Flavobacterium johnsoniae (Cytophaga johnsonae) gliding motility gene, gldA. Proc. Natl Acad. Sci. USA 94, 12139–12144 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dietsche, T. et al. Structural and functional characterization of the bacterial type III secretion export apparatus. PLoS Pathog. 12, e1006071 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Drew, D., Lerch, M., Kunji, E., Slotboom, D. J. & de Gier, J. W. Optimization of membrane protein overexpression and purification using GFP fusions. Nat. Methods 3, 303–313 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Zhu, Y. et al. Genetic analyses unravel the crucial role of a horizontally acquired alginate lyase for brown algal biomass degradation by Zobellia galactanivorans. Environ. Microbiol. 19, 2164–2181 (2017).

    Article  CAS  PubMed  Google Scholar 

  39. Jacobus, A. P. & Gross, J. Optimal cloning of PCR fragments by homologous recombination in Escherichia coli. PLoS ONE 10, e0119221 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Thanbichler, M., Iniesta, A. A. & Shapiro, L. A comprehensive set of plasmids for vanillate- and xylose-inducible gene expression in Caulobacter crescentus. Nucleic Acids Res. 35, e137 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Simon, R., Priefer, U. & Puhler, A. A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram-negative bacteria. Nat. Biotechnol. 1, 784–791 (1983).

    Article  CAS  Google Scholar 

  42. Miller, J. Experiments in Molecular Genetics (Cold Spring Harbor, 1972).

  43. Tartof, K. D. A. & Hobbs, C. A. Improved media for growing plasmid and cosmid clones. Bethesda Res. Lab. Focus 9, 12 (1987).

    Google Scholar 

  44. Baumgarten, T. et al. Isolation and characterization of the E. coli membrane protein production strain Mutant56(DE3). Sci. Rep. 7, 45089 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zivanov, J., Nakane, T. & Scheres, S. H. W. A Bayesian approach to beam-induced motion correction in cryo-EM single-particle analysis. IUCrJ 6, 5–17 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Rohou, A. & Grigorieff, N. CTFFIND4: fast and accurate defocus estimation from electron micrographs. J. Struct. Biol. 192, 216–221 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Reboul, C. F., Eager, M., Elmlund, D. & Elmlund, H. Single-particle cryo-EM-improved ab initio 3D reconstruction with SIMPLE/PRIME. Protein Sci. 27, 51–61 (2018).

    Article  CAS  PubMed  Google Scholar 

  48. Tan, Y. Z. et al. Addressing preferred specimen orientation in single-particle cryo-EM through tilting. Nat. Methods 14, 793–796 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Krogh, A., Larsson, B., von Heijne, G. & Sonnhammer, E. L. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J. Mol. Biol. 305, 567–580 (2001).

    Article  CAS  PubMed  Google Scholar 

  51. Afonine, P. V. et al. Real-space refinement in PHENIX for cryo-EM and crystallography. Acta Crystallogr. D 74, 531–544 (2018).

    Article  CAS  Google Scholar 

  52. Williams, C. J. et al. MolProbity: more and better reference data for improved all-atom structure validation. Protein Sci. 27, 293–315 (2018).

    Article  CAS  PubMed  Google Scholar 

  53. Ashkenazy, H. et al. ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules. Nucleic Acids Res. 44, W344–W350 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Goddard, T. D. et al. UCSF ChimeraX: meeting modern challenges in visualization and analysis. Protein Sci. 27, 14–25 (2018).

    Article  CAS  PubMed  Google Scholar 

  55. Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Grimm, J. B., Brown, T. A., English, B. P., Lionnet, T. & Lavis, L. D. Synthesis of Janelia Fluor HaloTag and SNAP-tag ligands and their use in cellular imaging experiments. Methods Mol. Biol. 1663, 179–188 (2017).

    Article  CAS  PubMed  Google Scholar 

  57. Grimm, J. B. et al. Bright photoactivatable fluorophores for single-molecule imaging. Nat. Methods 13, 985–988 (2016).

    Article  CAS  PubMed  Google Scholar 

  58. Chang, L. Y. E. & Pate, J. L. Nutritional-requirements of Cytophaga johnsonae and some of its auxotrophic mutants. Curr. Microbiol. 5, 235–240 (1981).

    Article  CAS  Google Scholar 

  59. The R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2017).

  60. Krissinel, E. & Henrick, K. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 372, 774–797 (2007).

    Article  CAS  PubMed  Google Scholar 

  61. Kamisetty, H., Ovchinnikov, S. & Baker, D. Assessing the utility of coevolution-based residue–residue contact predictions in a sequence- and structure-rich era. Proc. Natl Acad. Sci. USA 110, 15674–15679 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank M. McBride and Y. Zhu for providing reagents for the genetic manipulation of F. johnsoniae. We thank L. Lavis for supplying the Janelia Fluor ligands, S. Hickman for advice on fluorescence imaging and A. Wainman for assistance with phase contrast imaging. We thank P. Guy for his involvement in producing the pulse-chase mCherry–CTD fusion construct and R. Berry for discussions. We acknowledge the use of the Central Oxford Structural Microscopy and Imaging Centre (COSMIC) and the Oxford Micron Advanced Imaging Facility. We thank K. Foster for providing additional imaging facilities. This work was supported by Wellcome Trust studentships to R.H.J. and A.S. (grant no. 1009136), a Biotechnology and Biological Sciences Research Council studentship to A.K. and Wellcome Trust Investigator Awards (grant nos. 107929/Z/15/Z and 100298/Z/12/Z). COSMIC was supported by a Wellcome Trust Collaborative Award (grant no. 201536/Z/16/Z), the Wolfson Foundation, a Royal Society Wolfson Refurbishment Grant, the John Fell Fund, and the EPA and Cephalosporin Trusts.

Author information

Authors and Affiliations

Authors

Contributions

R.H.J. carried out all genetic and biochemical work except as credited otherwise. J.C.D. and S.M.L. collected electron microscopy data and determined the structures. A.K. developed and carried out the SprB tracking experiments including strain construction. F.A. carried out the pulse chase analysis of protein export. A.S. assayed cellular ATP levels. F.L. constructed the ∆gldL strain and produced the GldL and GldM antibodies. B.C.B. and S.M.L. conceived the project. All authors interpreted data and wrote the manuscript.

Corresponding authors

Correspondence to Ben C. Berks or Susan M. Lea.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Microbiology thanks Julien Bergeron, Dhana Gorasia and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Purification of the GldLM’ and PorLM complexes.

Coomassie Blue-stained SDS-PAGE gels and size-exclusion column traces of complexes used for cryoEM structure determination. In each case the size exclusion column fractions that were pooled to make the cryoEM grids are denoted by an arrow and correspond to the fractions analysed on the gels. A280 is the absorption at 280 nm in arbitrary units. a, GldLM225(produced from pRHJ007). b, GldLM232 (produced from pRHJ008). c, PorLM (produced from pRHJ006).

Extended Data Fig. 2 Cryo-EM workflow for GldLM′.

a, Exemplar micrograph collected at a defocus value of approximately −2.5 μm, Scale bar is 200 Å. b, Image processing workflow for GldLM’. Scale bar is 100 Å. c, Directional Fourier Shell Correlation (FSC) plot for GldLM′ calculated using the 3DFSC server52. d, Particle Orientation Distributions from final refined volume. Rotation (phi) is plotted along the x axis and tilt (theta) on the y axis. The area of the dot at the angular position is proportional to the number of particles assigned to that view.

Extended Data Fig. 3 Cryo-EM workflow for PorLM.

a, Image processing workflow for PorLM. Scale bar is 100 Å. b, Fourier Shell Correlation (FSC) plot for PorLM Red, phase randomised; Green, unmasked; Blue, masked; Black, corrected. c, Local resolution histogram of PorLM volume. d, Particle Orientation Distributions from final refined volume. Rotation (phi) is plotted along the x axis and tilt (theta) on the y axis. The area of the dot at the angular position is proportional to the number of particles assigned to that view.

Extended Data Fig. 4 Cryo-EM map quality and resolution estimates.

a, Fourier Shell Correlation (FSC) plot for the GldLM′ structure. The resolution at the gold-standard cutoff (FSC = 0.143) is indicated by the dashed line. Curves: Red, phase-randomized; Green, unmasked; blue, masked; black, MTF-corrected. b, Local resolution estimates (in Å) for the sharpened GldLM′ map. c, Representative modelled densities.

Extended Data Fig. 5

Cryo-EM data collection, refinement and validation statistics.

Extended Data Fig. 6 Contacts between the periplasmic loops of GldL and GldM.

The PDBePISA server (http://www.ebi.ac.uk/pdbe/pisart.html)60 was used to calculate the sizes of the interfaces between the periplasmic loops of each copy of GldL and the periplasmic domains of GldM. The periplasmic loops of GldL were taken to include residues 29–41.

Extended Data Fig. 7 Conservation analysis of the GldLM′ complex. a-c, Sequence conservation assessed using Consurf57.

a, The whole complex in cartoon representation. The chains shown individually in b and c are indicated with black arrows. b,c, GldM (chain B) and GldL (chain F) in surface representation. The left hand panels show the chains in the same orientation as the upper panel of a. d, Co-varying residue pairs in the first periplasmic domain of GldM identified using the Gremlin server61. The highest-scoring pairs (score cut-off 1.63) are shown on the structure of the GldLM′ complex. Contacts with a minimum atom-atom distance of <5 Å are shown in green, and 5–10 Å in yellow. Note, that no high-scoring GldM-GldM intermolecular pairs were observed for D1. Conversely dimerization of the other periplasmic domains is supported by co-variance with the following strongly co-varying pairs identified in the other domains D2:Val253-Ile284, Phe248-Glu-293, Tyr236-Arg261; D3: Thr327-Ala349, Asp331-Lys371; D4: Ala456-Asp483.

Extended Data Fig. 8 The full length PorLM volume is compatible with the shape of GldLM′ but not with the domain arrangements of earlier crystallographic structures of GldM (6ey4,) or PorM (6ey5) fragments.

The PorLM volume is contoured at 2.5 s and the upper and lower panels are related by a 90o rotation about the y axis. The approximate domain boundaries are indicated by the dashed lines and domains in these regions are labelled on the right hand side of the figure. The cryoEM structure of GldLM′ is positioned by docking the GldM′ TMHs onto the PorM TMHs as described in the text and Fig. 3. The D1 dimer of GldM 6ey415 is docked into the D1 portion of the volume and shows (1) poor fit within D1 because the centre of the closed crystallographic dimer protrudes from the volume and (2) poor fit in the D2-D4 region when no bend is introduced between D1-D2. PorM 6ey515 is positioned by placement of D2 into its portion of the volume and shows a poor fit for D3-4 which protrude from the volume. The hybrid model presented in Fig. 3 is shown for comparison, with GldM coloured as in other panels and GldL chains coloured individually.

Extended Data Fig. 9 Gliding motility and T9SS phenotypes of mutant strains.

Footnotes for table:1 Data from Fig. 4a.2 Activity of the major T9SS substrate chitinase in the extracellular medium. Includes data shown in Fig. 4b.3+ ++, spreads as well as the parental strain; ++ spreads less well than the parental strain; + residual spreading; - does not spread. Includes data shown in Fig. 4c. 4 Includes data from Supplementary Movie 1. Note that only strains possessing cell surface adhesins are able to adhere to glass slides, and that adhesin export to the cell surface requires the T9SS which in turn depends on functional GldLM. 5Data from Fig. 4d.

Extended Data Fig. 10 Closeup views of density around side chains discussed in manuscript.

Cryo-EM volumes contoured at 3 sigma. Key side chains are shown for both copies of GldM and for the GldL chain involved in the putative GldLE49 – GldMR9 salt-bridge.

Supplementary information

Supplementary Information

Supplementary Fig. 1, Supplementary Tables 1–3 and a list of Supplementary Videos 1–8.

Reporting Summary

Supplementary Video 1

Mutant strains gliding on glass. Wild-type, gldLY13A, gldLY13F, gldLK27A, gldLH30A, gldLE49D, gldMR9K, gldMY17A and gldMY17F cells are shown.

Supplementary Video 2

Fluorophore-labelled SprB adhesin moving on the surface of a wild-type cell.

Supplementary Video 3

Fluorophore-labelled SprB adhesin moving on the surface of a gldLY13A cell.

Supplementary Video 4

Fluorophore-labelled SprB adhesin moving on the surface of a gldLK27A cell.

Supplementary Video 5

Fluorophore-labelled SprB adhesin moving on the surface of a gldLH30A cell.

Supplementary Video 6

Fluorophore-labelled SprB adhesin moving on the surface of a gldMR9K cell.

Supplementary Video 7

Fluorophore-labelled SprB adhesin moving on the surface of a gldMY17F cell.

Supplementary Video 8

Animation of a rotary model of GldLM mechanism.

Source data

Source Data Fig. 1

Uncropped gels for Fig. 1.

Source Data Fig. 4

Uncropped gels for Fig. 4.

Source Data Fig. 4

Uncropped motility plates for Fig. 4.

Source Data Fig. 5

Uncropped gels for Fig. 5.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hennell James, R., Deme, J.C., Kjӕr, A. et al. Structure and mechanism of the proton-driven motor that powers type 9 secretion and gliding motility. Nat Microbiol 6, 221–233 (2021). https://doi.org/10.1038/s41564-020-00823-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-020-00823-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing