Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Deciphering molecular interactions by proximity labeling

Abstract

Many biological processes are executed and regulated through the molecular interactions of proteins and nucleic acids. Proximity labeling (PL) is a technology for tagging the endogenous interaction partners of specific protein ‘baits’, via genetic fusion to promiscuous enzymes that catalyze the generation of diffusible reactive species in living cells. Tagged molecules that interact with baits can then be enriched and identified by mass spectrometry or nucleic acid sequencing. Here we review the development of PL technologies and highlight studies that have applied PL to the discovery and analysis of molecular interactions. In particular, we focus on the use of PL for mapping protein–protein, protein–RNA and protein–DNA interactions in living cells and organisms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Peroxidase- and biotin ligase-based proximity labeling methods for PPI mapping.
Fig. 2: PL-based methods to investigate protein–nucleic acid interactions.

Similar content being viewed by others

References

  1. Keskin, O., Tuncbag, N. & Gursoy, A. Predicting protein-protein interactions from the molecular to the proteome level. Chem. Rev. 116, 4884–4909 (2016).

    Article  CAS  PubMed  Google Scholar 

  2. Hentze, M. W., Castello, A., Schwarzl, T. & Preiss, T. A brave new world of RNA-binding proteins. Nat. Rev. Mol. Cell Biol. 19, 327–341 (2018).

    Article  CAS  PubMed  Google Scholar 

  3. Brückner, A., Polge, C., Lentze, N., Auerbach, D. & Schlattner, U. Yeast two-hybrid, a powerful tool for systems biology. Int. J. Mol. Sci. 10, 2763–2788 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Dunham, W. H., Mullin, M. & Gingras, A. C. Affinity-purification coupled to mass spectrometry: basic principles and strategies. Proteomics 12, 1576–1590 (2012).

    Article  CAS  PubMed  Google Scholar 

  5. Visa, N. & Jordán-Pla, A. ChIP and ChIP-related techniques: expanding the fields of application and improving ChIP performance. Methods Mol. Biol. 1689, 1–7 (2018).

    Article  CAS  PubMed  Google Scholar 

  6. Park, P. J. ChIP-seq: advantages and challenges of a maturing technology. Nat. Rev. Genet. 10, 669–680 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Liu, F., Rijkers, D. T. S., Post, H. & Heck, A. J. R. Proteome-wide profiling of protein assemblies by cross-linking mass spectrometry. Nat. Methods 12, 1179–1184 (2015).

    Article  CAS  PubMed  Google Scholar 

  8. Trigg, S. A. et al. CrY2H-seq: a massively multiplexed assay for deep-coverage interactome mapping. Nat. Methods 14, 819–825 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lam, S. S. et al. Directed evolution of APEX2 for electron microscopy and proximity labeling. Nat. Methods 12, 51–54 (2015). This study used directed evolution to develop APEX2.

    Article  CAS  PubMed  Google Scholar 

  10. Kotani, N. et al. Biochemical visualization of cell surface molecular clustering in living cells. Proc. Natl Acad. Sci. USA 105, 7405–7409 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Roux, K. J., Kim, D. I., Raida, M. & Burke, B. A promiscuous biotin ligase fusion protein identifies proximal and interacting proteins in mammalian cells. J. Cell Biol. 196, 801–810 (2012). This study introduced a variant of BioID for promiscuous PL.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Choi-Rhee, E., Schulman, H. & Cronan, J. E. Promiscuous protein biotinylation by Escherichia coli biotin protein ligase. Protein Sci. 13, 3043–3050 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kim, D. I. et al. An improved smaller biotin ligase for BioID proximity labeling. Mol. Biol. Cell 27, 1188–1196 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ramanathan, M. et al. RNA-protein interaction detection in living cells. Nat. Methods 15, 207–212 (2018). This PL-based study reported a means to identify RBPs associated with an RNA of interest.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Branon, T. C. et al. Efficient proximity labeling in living cells and organisms with TurboID. Nat. Biotechnol. 36, 880–887 (2018). This study used directed evolution to engineer TurboID from BioID.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Martell, J. D. et al. Engineered ascorbate peroxidase as a genetically encoded reporter for electron microscopy. Nat. Biotechnol. 30, 1143–1148 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kim, D. I. et al. Probing nuclear pore complex architecture with proximity-dependent biotinylation. Proc. Natl Acad. Sci. USA 111, E2453–E2461 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hung, V. et al. Spatially resolved proteomic mapping in living cells with the engineered peroxidase APEX2. Nat. Protoc. 11, 456–475 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rhee, H. W. et al. Proteomic mapping of mitochondria in living cells via spatially restricted enzymatic tagging. Science 339, 1328–1331 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Martell, J. D. et al. A split horseradish peroxidase for the detection of intercellular protein-protein interactions and sensitive visualization of synapses. Nat. Biotechnol. 34, 774–780 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Markmiller, S. et al. Context-dependent and disease-specific diversity in protein interactions within stress granules. Cell 172, 590–604.e13 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Loh, K. H. et al. Proteomic analysis of unbounded cellular compartments: synaptic clefts. Cell 166, 1295–1307.e21 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hung, V. et al. Proteomic mapping of cytosol-facing outer mitochondrial and ER membranes in living human cells by proximity biotinylation. eLife 6, e24463 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Youn, J. Y. et al. High-density proximity mapping reveals the subcellular organization of mRNA-associated granules and bodies. Mol. Cell 69, 517–532.e11 (2018).

    Article  CAS  PubMed  Google Scholar 

  25. Kehrer, J., Frischknecht, F. & Mair, G. R. Proteomic analysis of the Plasmodium berghei gametocyte egressome and vesicular bioid of osmiophilic body proteins identifies merozoite trap-like protein (MTRAP) as an essential factor for parasite transmission. Mol. Cell. Proteomics 15, 2852–2862 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Han, S. et al. Proximity biotinylation as a method for mapping proteins associated with mtDNA in living cells. Cell. Chem. Biol. 24, 404–414 (2017).

    CAS  Google Scholar 

  27. Miyagawa-Yamaguchi, A., Kotani, N. & Honke, K. Expressed glycosylphosphatidylinositol-anchored horseradish peroxidase identifies co-clustering molecules in individual lipid raft domains. PLoS One 9, e93054 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Gingras, A. C., Abe, K. T. & Raught, B. Getting to know the neighborhood: using proximity-dependent biotinylation to characterize protein complexes and map organelles. Curr. Opin. Chem. Biol. 48, 44–54 (2019).

    Article  CAS  PubMed  Google Scholar 

  29. Gullberg, M. et al. Cytokine detection by antibody-based proximity ligation. Proc. Natl Acad. Sci. USA 101, 8420–8424 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fredriksson, S. et al. Protein detection using proximity-dependent DNA ligation assays. Nat. Biotechnol. 20, 473–477 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Yang, Y. et al. Genetically encoded protein photocrosslinker with a transferable mass spectrometry-identifiable label. Nat. Commun. 7, 12299 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Liu, Q. et al. A proximity-tagging system to identify membrane protein-protein interactions. Nat. Methods 15, 715–722 (2018).

    Article  CAS  PubMed  Google Scholar 

  33. Geri, J. B. et al. Microenvironment mapping via Dexter energy transfer on immune cells. Science 367, 1091–1097 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Dumont, A.A., Dumont, L., Berthiaume, J. & Auger-Messier, M. p38α MAPK proximity assay reveals a regulatory mechanism of alternative splicing in cardiomyocytes. Biochim. Biophys. Acta Mol. Cell Res. 1866, 118557 (2019).

    Article  CAS  PubMed  Google Scholar 

  35. Prikas, E., Poljak, A. & Ittner, A. Mapping p38α mitogen-activated protein kinase signaling by proximity-dependent labeling. Protein Sci. 29, 1196–1210 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Couzens, A. L. et al. Protein interaction network of the mammalian Hippo pathway reveals mechanisms of kinase-phosphatase interactions. Sci. Signal. 6, rs15 (2013). This study fused BioID to 19 members of the Hippo pathway for interactome mapping.

    Article  PubMed  CAS  Google Scholar 

  37. Liu, G. et al. Mechanism of adrenergic CaV1.2 stimulation revealed by proximity proteomics. Nature 577, 695–700 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Paek, J. et al. Multidimensional tracking of GPCR signaling via peroxidase-catalyzed proximity labeling. Cell 169, 338–349.e11 (2017). This study utilized APEX to map the dynamic interactomes of the GPCRs AT1R and β2AR in response to agonist activation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lobingier, B. T. et al. An approach to spatiotemporally resolve protein interaction networks in living cells. Cell 169, 350–360.e12 (2017). This study utilized APEX to map the dynamic interactomes of the δ-opioid receptor, a GPCR, in response to agonist activation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Coyaud, E. et al. BioID-based identification of skp cullin F-box (SCF)β-TrCP1/2 E3 ligase substrates. Mol. Cell. Proteomics 14, 1781–1795 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mannix, K. M., Starble, R. M., Kaufman, R. S. & Cooley, L. Proximity labeling reveals novel interactomes in live Drosophila tissue. Development 146, dev176644 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cutler, J. A. et al. Differential signaling through p190 and p210 BCR-ABL fusion proteins revealed by interactome and phosphoproteome analysis. Leukemia 31, 1513–1524 (2017).

    Article  CAS  PubMed  Google Scholar 

  43. Rodríguez-Fraticelli, A. E. et al. Developmental regulation of apical endocytosis controls epithelial patterning in vertebrate tubular organs. Nat. Cell Biol. 17, 241–250 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Holthenrich, A., Drexler, H. C. A., Chehab, T., Naß, J. & Gerke, V. Proximity proteomics of endothelial Weibel-Palade bodies identifies novel regulator of von Willebrand factor secretion. Blood 134, 979–982 (2019).

    Article  CAS  PubMed  Google Scholar 

  45. Liao, Y. C. et al. RNA granules hitchhike on lysosomes for long-distance transport, using annexin a11 as a molecular tether. Cell 179, 147–164.e20 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chung, C. Y. et al. In situ peroxidase labeling and mass-spectrometry connects alpha-synuclein directly to endocytic trafficking and mRNA metabolism in neurons. Cell Syst. 4, 242–250.e4 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Santin, Y. G. et al. In vivo TssA proximity labelling during type VI secretion biogenesis reveals TagA as a protein that stops and holds the sheath. Nat. Microbiol. 3, 1304–1313 (2018).

    Article  CAS  PubMed  Google Scholar 

  48. Opitz, N. et al. Capturing the Asc1p/Receptor for Activated C Kinase 1 (RACK1) microenvironment at the head region of the 40s ribosome with quantitative BioID in yeast. Mol. Cell. Proteomics 16, 2199–2218 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Larochelle, M., Bergeron, D., Arcand, B. & Bachand, F. Proximity-dependent biotinylation mediated by TurboID to identify protein-protein interaction networks in yeast. J. Cell Sci. 132, jcs232249 (2019).

    Article  CAS  PubMed  Google Scholar 

  50. Li, J. et al. Cell-surface proteomic profiling in the fly brain uncovers wiring regulators. Cell 180, 373–386.e15 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Domsch, K. et al. The Hox transcription factor Ubx stabilizes lineage commitment by suppressing cellular plasticity in Drosophila. eLife 8, e42675 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Khan, M., Youn, J. Y., Gingras, A. C., Subramaniam, R. & Desveaux, D. In planta proximity dependent biotin identification (BioID). Sci. Rep. 8, 9212 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Mair, A., Xu, S. L., Branon, T. C., Ting, A. Y. & Bergmann, D. C. Proximity labeling of protein complexes and cell-type-specific organellar proteomes in Arabidopsis enabled by TurboID. eLife 8, e47864 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Feng, W. et al. Identifying the cardiac dyad proteome in vivo by a BioID2 knock-in strategy. Circulation 141, 940–942 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Uezu, A. et al. Identification of an elaborate complex mediating postsynaptic inhibition. Science 353, 1123–1129 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Dingar, D. et al. BioID identifies novel c-MYC interacting partners in cultured cells and xenograft tumors. J. Proteomics 118, 95–111 (2015). This study reported the use of BioID in vivo in mice.

    Article  CAS  PubMed  Google Scholar 

  57. Bar, D. Z. et al. Biotinylation by antibody recognition—a method for proximity labeling. Nat. Methods 15, 127–133 (2018).

    Article  CAS  PubMed  Google Scholar 

  58. Birendra, Kc. et al. VRK2A is an A-type lamin-dependent nuclear envelope kinase that phosphorylates BAF. Mol. Biol. Cell 28, 2241–2250 (2017).

    Article  CAS  PubMed Central  Google Scholar 

  59. Fu, Y. et al. MacroH2A1 associates with nuclear lamina and maintains chromatin architecture in mouse liver cells. Sci. Rep. 5, 17186 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Mackmull, M. T. et al. Landscape of nuclear transport receptor cargo specificity. Mol. Syst. Biol. 13, 962 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Chou, C. C. et al. TDP-43 pathology disrupts nuclear pore complexes and nucleocytoplasmic transport in ALS/FTD. Nat. Neurosci. 21, 228–239 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Phelan, J. D. et al. A multiprotein supercomplex controlling oncogenic signalling in lymphoma. Nature 560, 387–391 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Cui, Y. et al. The NF2 tumor suppressor merlin interacts with Ras and RasGAP, which may modulate Ras signaling. Oncogene 38, 6370–6381 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Che, Y. et al. KRAS regulation by small non-coding RNAs and SNARE proteins. Nat. Commun. 10, 5118 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Mirza, A. N. et al. LAP2 proteins chaperone GLI1 movement between the lamina and chromatin to regulate transcription. Cell 176, 198–212.e15 (2019).

    Article  CAS  PubMed  Google Scholar 

  66. Park, S. S. et al. Kir2. 1 interactome mapping uncovers PKP4 as a modulator of the Kir2.1-regulated inward rectifier potassium currents. Mol. Cell. Proteomics 19, 1436–1449 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Chang, L. et al. Identification of siglec ligands using a proximity labeling method. J. Proteome Res. 16, 3929–3941 (2017).

    Article  CAS  PubMed  Google Scholar 

  68. Wu, G., Nagala, M. & Crocker, P. R. Identification of lectin counter-receptors on cell membranes by proximity labeling. Glycobiology 27, 800–805 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zheng, N. & Shabek, N. Ubiquitin ligases: structure, function, and regulation. Annu. Rev. Biochem. 86, 129–157 (2017).

    Article  CAS  PubMed  Google Scholar 

  70. Grainger, S. et al. EGFR is required for Wnt9a–Fzd9b signalling specificity in haematopoietic stem cells. Nat. Cell Biol. 21, 721–730 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. James, C. et al. Proteomic mapping by rapamycin-dependent targeting of APEX2 identifies binding partners of VAPB at the inner nuclear membrane. J. Biol. Chem. 294, 16241–16254 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. De Munter, S. et al. Split-BioID: a proximity biotinylation assay for dimerization-dependent protein interactions. FEBS Lett. 591, 415–424 (2017).

    Article  PubMed  CAS  Google Scholar 

  73. Schopp, I. M. et al. Split-BioID a conditional proteomics approach to monitor the composition of spatiotemporally defined protein complexes. Nat. Commun. 8, 15690 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kwak, C. et al. Contact-ID, a new tool for profiling organelle contact site, reveals proteins of mitochondrial-associated membrane formation. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.1916584117 (2020).

  75. Han, Y. et al. Directed evolution of split APEX2 peroxidase. ACS Chem. Biol. 14, 619–635 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Cho, K. F. et al. Split-TurboID enables contact-dependent proximity labeling in cells. Proc. Natl. Acad. Sci. USA 117, 12143–12154 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Conlan, B., Stoll, T., Gorman, J. J., Saur, I. & Rathjen, J. P. Development of a rapid in planta bioid system as a probe for plasma membrane-associated immunity proteins. Front. Plant Sci. 9, 1882 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Zhang, Y. et al. TurboID-based proximity labeling reveals that UBR7 is a regulator of N NLR immune receptor-mediated immunity. Nat. Commun. 10, 3252 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Batsios, P., Meyer, I. & Gräf, R. Proximity-Dependent Biotin Identification (BioID) in Dictyostelium amoebae. Methods Enzymol. 569, 23–42 (2016).

    Article  CAS  PubMed  Google Scholar 

  80. Pitzen, V., Askarzada, S., Gräf, R. & Meyer, I. CDK5RAP2 is an essential scaffolding protein of the corona of the Dictyostelium centrosome. Cells 7, 32 (2018).

    Article  PubMed Central  CAS  Google Scholar 

  81. Morriswood, B. et al. Novel bilobe components in Trypanosoma brucei identified using proximity-dependent biotinylation. Eukaryot. Cell 12, 356–367 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Chen, A. L. et al. Novel components of the Toxoplasma inner membrane complex revealed by BioID. MBio 6, e02357–e14 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. McAllaster, M. R. et al. Proteomic identification of novel cytoskeletal proteins associated with TbPLK, an essential regulator of cell morphogenesis in Trypanosoma brucei. Mol. Biol. Cell 26, 3013–3029 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Khosh-Naucke, M. et al. Identification of novel parasitophorous vacuole proteins in P. falciparum parasites using BioID. Int. J. Med. Microbiol. 308, 13–24 (2018).

    Article  CAS  PubMed  Google Scholar 

  85. Tu, V. et al. The Toxoplasma gondii cyst wall interactome. MBio 11, e02699–19 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Shinoda, N., Hanawa, N., Chihara, T., Koto, A. & Miura, M. Dronc-independent basal executioner caspase activity sustains Drosophila imaginal tissue growth. Proc. Natl Acad. Sci. USA 116, 20539–20544 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Carnesecchi, J. et al. Multi-level and lineage-specific interactomes of the Hox transcription factor Ubx contribute to its functional specificity. Nat. Commun. 11, 1388 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Ramanathan, M., Porter, D. F. & Khavari, P. A. Methods to study RNA-protein interactions. Nat. Methods 16, 225–234 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Licatalosi, D. D. et al. HITS-CLIP yields genome-wide insights into brain alternative RNA processing. Nature 456, 464–469 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Hafner, M. et al. Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell 141, 129–141 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Kim, B. & Kim, V. N. fCLIP-seq for transcriptomic footprinting of dsRNA-binding proteins: Lessons from DROSHA. Methods 152, 3–11 (2019).

    Article  CAS  PubMed  Google Scholar 

  92. Van Nostrand, E. L. et al. Robust transcriptome-wide discovery of RNA-binding protein binding sites with enhanced CLIP (eCLIP). Nat. Methods 13, 508–514 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Konig, J. et al. iCLIP – transcriptome-wide mapping of protein-RNA interactions with individual nucleotide resolution. J. Vis. Exp. https://doi.org/10.3791/2638 (2011).

  94. Zarnegar, B. J. et al. irCLIP platform for efficient characterization of protein-RNA interactions. Nat. Methods 13, 489–492 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Trendel, J. et al. The human RNA-binding proteome and its dynamics during translational arrest. Cell 176, 391–403.e19 (2019).

    Article  CAS  PubMed  Google Scholar 

  96. Kaewsapsak, P., Shechner, D. M., Mallard, W., Rinn, J. L. & Ting, A. Y. Live-cell mapping of organelle-associated RNAs via proximity biotinylation combined with protein-RNA crosslinking. eLife 6, e29224 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Benhalevy, D., Anastasakis, D. G. & Hafner, M. Proximity-CLIP provides a snapshot of protein-occupied RNA elements in subcellular compartments. Nat. Methods 15, 1074–1082 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Fazal, F. M. et al. Atlas of subcellular RNA localization revealed by APEX-Seq. Cell 178, 473–490.e26 (2019). This study used APEX to systematically investigate subcellular localization of RNA.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Padrón, A., Iwasaki, S. & Ingolia, N. T. Proximity RNA labeling by APEX-Seq reveals the organization of translation initiation complexes and repressive RNA granules. Mol. Cell 75, 875–887.e5 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Zhou, Y. et al. Expanding APEX2 substrates for proximity-dependent labeling of nucleic acids and proteins in living cells. Angew. Chem. Int. Ed. Engl. 58, 11763–11767 (2019).

    Article  CAS  PubMed  Google Scholar 

  101. Wang, P. et al. Mapping spatial transcriptome with light-activated proximity-dependent RNA labeling. Nat. Chem. Biol. 15, 1110–1119 (2019).

    Article  CAS  PubMed  Google Scholar 

  102. McHugh, C. A. & Guttman, M. RAP-MS: a method to identify proteins that interact directly with a specific RNA molecule in cells. Methods Mol. Biol. 1649, 473–488 (2018).

    Article  CAS  PubMed  Google Scholar 

  103. Zeng, F. et al. A protocol for PAIR: PNA-assisted identification of RNA binding proteins in living cells. Nat. Protoc. 1, 920–927 (2006).

    Article  CAS  PubMed  Google Scholar 

  104. Matia-González, A. M., Iadevaia, V. & Gerber, A. P. A versatile tandem RNA isolation procedure to capture in vivo formed mRNA-protein complexes. Methods 118-119, 93–100 (2017).

    Article  PubMed  CAS  Google Scholar 

  105. Simon, M. D. et al. The genomic binding sites of a noncoding RNA. Proc. Natl Acad. Sci. USA 108, 20497–20502 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Chu, C., Qu, K., Zhong, F. L., Artandi, S. E. & Chang, H. Y. Genomic maps of long noncoding RNA occupancy reveal principles of RNA-chromatin interactions. Mol. Cell 44, 667–678 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Tsai, B. P., Wang, X., Huang, L. & Waterman, M. L. Quantitative profiling of in vivo-assembled RNA-protein complexes using a novel integrated proteomic approach. Mol. Cell. Proteomics 10, 007385 (2011).

    PubMed  Google Scholar 

  108. Mukherjee, J. et al. β-Actin mRNA interactome mapping by proximity biotinylation. Proc. Natl Acad. Sci. USA 116, 12863–12872 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Han, S. et al. RNA-protein interaction mapping via MS2 or Cas13-based APEX targeting. Proc. Natl Acad. Sci. USA 117, 22068–22079 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Li, Y. et al. CBRPP a new RNA-centric method to study RNA-protein interactions. Preprint at bioRxiv https://doi.org/10.1101/2020.04.09.033290 (2020).

  111. Lin, X., Fonesca, M. A. S., Corona, R. I. & Lawrenson, K. In vivo discovery of RNA proximal proteins in human cells via proximity-dependent biotinylation. Preprint at bioRxiv https://doi.org/10.1101/2020.02.28.970442 (2020).

  112. Zhang, Z. et al. Capturing RNA-protein interaction via CRUIS. Nucleic Acids Res. 48, e52 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Yi, W. et al. CRISPR-assisted detection of RNA-protein interactions in living cells. Nat. Methods 17, 685–688 (2020).

    Article  CAS  PubMed  Google Scholar 

  114. Kurihara, M. et al. Genomic profiling by ALaP-Seq reveals transcriptional regulation by PML bodies through DNMT3A exclusion. Mol. Cell 78, 493–505.e8 (2020).

    Article  CAS  PubMed  Google Scholar 

  115. Lallemand-Breitenbach, V. & de Thé, H. PML nuclear bodies. Cold Spring Harb. Perspect. Biol 2, a000661 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Myers, S. A. et al. Discovery of proteins associated with a predefined genomic locus via dCas9-APEX-mediated proximity labeling. Nat. Methods 15, 437–439 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Gao, X. D. et al. C-BERST: defining subnuclear proteomic landscapes at genomic elements with dCas9-APEX2. Nat. Methods 15, 433–436 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Qiu, W. et al. Determination of local chromatin interactions using a combined CRISPR and peroxidase APEX2 system. Nucleic Acids Res. 47, e52 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Mohammed, H. et al. Rapid immunoprecipitation mass spectrometry of endogenous proteins (RIME) for analysis of chromatin complexes. Nat. Protoc. 11, 316–326 (2016).

    Article  CAS  PubMed  Google Scholar 

  120. Wang, C. I. et al. Chromatin proteins captured by ChIP-mass spectrometry are linked to dosage compensation in Drosophila. Nat. Struct. Mol. Biol. 20, 202–209 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Villaseñor, R. et al. ChromID identifies the protein interactome at chromatin marks. Nat. Biotechnol. https://doi.org/10.1038/s41587-020-0434-2 (2020). This study used biotin ligase to identify proteins associated with specific chromatin marks.

  122. Cho, K. F. et al. Proximity labeling in mammalian cells with TurboID and split-TurboID. Nat. Protoc. https://doi.org/10.1038/s41596-020-0399-0 (2020).

  123. Minde, D. P., Ramakrishna, M. & Lilley, K. S. Biotin proximity tagging favours unfolded proteins and enables the study of intrinsically disordered regions. Commun. Biol. https://doi.org/10.1038/s42003-020-0758-y (2020).

  124. Cole, A. et al. Inhibition of the mitochondrial protease ClpP as a therapeutic strategy for human acute myeloid leukemia. Cancer Cell 27, 864–876 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Shin, J. J. H., Gillingham, A. K., Begum, F., Chadwick, J. & Munro, S. TBC1D23 is a bridging factor for endosomal vesicle capture by golgins at the trans-Golgi. Nat. Cell Biol. 19, 1424–1432 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Liu, L., Doray, B. & Kornfeld, S. Recycling of Golgi glycosyltransferases requires direct binding to coatomer. Proc. Natl Acad. Sci. USA 115, 8984–8989 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Jia, J. et al. Galectins control mTOR in response to endomembrane damage. Mol. Cell 70, 120–135.e8 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Tenenbaum, S. A., Carson, C. C., Lager, P. J. & Keene, J. D. Identifying mRNA subsets in messenger ribonucleoprotein complexes by using cDNA arrays. Proc. Natl Acad. Sci. USA 97, 14085–14090 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. McMahon, A. C. et al. TRIBE: hijacking an RNA-editing enzyme to identify cell-specific targets of RNA-binding proteins. Cell 165, 742–753 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Lapointe, C. P., Wilinski, D., Saunders, H. A. J. & Wickens, M. Protein–RNA networks revealed through covalent RNA marks. Nat. Methods 12, 1163–1170 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the NIH (R01-DK121409 to A.Y.T.) and Stanford Wu Tsai Neurosciences Institute. K.F.C. was supported by NIH Training Grant 2T32CA009302-41 and the Blavatnik Graduate Fellowship. P.E.C. was supported by the NSF Graduate Research Fellowship. A.Y.T. is an investigator of the Chan Zuckerberg Biohub.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alice Y. Ting.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Rita Strack was the primary editor on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, W., Cho, K.F., Cavanagh, P.E. et al. Deciphering molecular interactions by proximity labeling. Nat Methods 18, 133–143 (2021). https://doi.org/10.1038/s41592-020-01010-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41592-020-01010-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing