Skip to main content
Log in

Reasons of Crystallite Formation during the Self-Catalyzed GaAs Nanowire Growth

  • NANOSTRUCTURE TECHNOLOGY
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

During the self-catalyzed GaAs nanowire growth formation of parasitic GaAs crystallites is observed. The reasons for crystallite formation are explained on the base of Monte Carlo simulation results. During simultaneous deposition of gallium and arsenic on the GaAs(111)B substrate coated by a silicon oxide film, liquid gallium droplets nucleate on the oxide surface. After nucleation, droplets enlarge in size with time and etch the oxide layer. Formation of GaAs crystal structures becomes possible only after the Ga droplet contacts underlying crystal substrate. It is shown that excessively high arsenic and gallium deposition rates lead to the crystallite formation at the initial growth stage. The GaAs crystallites collect part of the deposited gallium and arsenic decreasing their surface concentration, thereby, adjusting the growth conditions for the nanowire growth. Therefore, during the self-catalyzed GaAs nanowire growth the self-regulation of growth conditions takes place.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Zh. Wang, and B. Nabet, Nanophotonics 4, 491 (2015).

    Article  Google Scholar 

  2. M. Karimi, M. Heurlin, S. Limpert, V. Jain, X. Zeng, I. Geijselaers, A. Nowzari, Y. Fu, L. Samuelson, H. Linke, M. T. Borgström, and H. Pettersson, Nano Lett. 18, 365 (2018).

    Article  ADS  Google Scholar 

  3. F. Bastiman, H. Küpers, C. Somaschini, and L. Geelhaar, Nanotechnology 27, 095601 (2016).

    Article  ADS  Google Scholar 

  4. M. R. Ramdani, J. C. Harmand, F. Glas, G. Patriarche, and L. Travers, Cryst. Growth Des. 13, 91 (2013).

    Article  Google Scholar 

  5. V. G. Dubrovskii, T. Xu, A. Alvarez, S. R. Plissard, P. Caroff, F. Glas, and B. Grandidier, Nano Lett. 15, 5580 (2015).

    Article  ADS  Google Scholar 

  6. F. Bastiman, H. Küpers, C. Somaschini, V. G. Dubrovskii, and L. Geelhaar, Phys. Rev. Mater. 3, 073401 (2019).

    Article  Google Scholar 

  7. H. Küpersa, F. Bastiman, E. Luna, C. Somaschini, and L. Geelhaar, J. Cryst. Growth 459, 43 (2017).

    Article  ADS  Google Scholar 

  8. T. Tauchnitz, T. Nurmamytov, R. Hübner, M. Engler, S. Facsko, H. Schneider, M. Helm, and E. Dimakis, Cryst. Growth Des. (in press). https://doi.org/10.1021/acs.cgd.7b00797

  9. J. Vukajlovic-Plestina, W. Kim, V. G. Dubrovski, G. Tütüncüoglu, M. Lagier, H. Potts, M. Friedl, and A. F. i Morral, Nano Lett. 17, 4101 (2017).

    Article  ADS  Google Scholar 

  10. F. Matteini, G. Tütüncüoglu, H. Potts, F. Jabeen, and A. F. i Morral, Cryst. Growth Des. 15, 3105 (2015).

    Article  Google Scholar 

  11. F. Matteini, G. Tütüncüoglu, D. Mikulik, J. Vukajlovic-Plestina, H. Potts, J.-B. Leran, W. Craig Carter, and A. F. i Morral, Cryst. Growth Des. 16, 5781 (2016).

    Article  Google Scholar 

  12. E. A. Emelyanov, A. G. Nastovjak, M. O. Petrushkov, M. Yu. Esin, T. A. Gavrilova, M. A. Putyato, N. L. Schwartz, V. A. Shvets, A. V. Vasev, B. R. Semyagin, and V. V. Preobrazhenskii, Tech. Phys. Lett. 46, 162 (2020).

    Article  ADS  Google Scholar 

  13. A. N. Karpov, A. V. Zverev, A. G. Nastovjak, S. V. Usenkov, and N. L. Shwartz, Vychisl. Metody Programm. 15, 388 (2014).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to T. Gavrilova for acquiring SEM micrographs.

Funding

This work was supported by the Russian Foundation for Basic Research (grant 18-02-00764).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. G. Nastovjak, N. L. Shwartz, E. A. Emelyanov, M. O. Petrushkov, A. V. Vasev, M. A. Putyato or V. V. Preobrazhenskii.

Ethics declarations

There is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nastovjak, A.G., Shwartz, N.L., Emelyanov, E.A. et al. Reasons of Crystallite Formation during the Self-Catalyzed GaAs Nanowire Growth. Semiconductors 54, 1850–1853 (2020). https://doi.org/10.1134/S1063782620140213

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782620140213

Keywords:

Navigation