Skip to main content
Log in

Synthesis, NMR Spectroscopy, and Molecular Modeling of 2-Methyl-2,3,4,5-tetrahydro-1H-[1]benzothieno[2,3-c]azepine

  • Published:
Russian Journal of Organic Chemistry Aims and scope Submit manuscript

Abstract

A new synthetic approach to fused azepines was demonstrated on an example of the synthesis of 2-methyl-2,3,4,5-tetrahydro-1H-[1]benzothieno[2,3-c]azepine. The key stage of the synthesis is the formation of the azepine ring under the Eschweiler–Clark reaction conditions. The Gibbs energy of activation for the inversion of the azepine ring was determined by dynamic 1H NMR spectroscopy. Molecular modeling of the structure and estimation of the 1H and 13C NMR chemical shifts were performed for 2-methyl-2,3,4,5-tetrahydro-1H-[1]-benzothieno[2,3-c]azepine. The magnetic shielding tensors were calculated by the standard GIAO method using the B3LYP/6-31G(d,p)-optimized molecular geometry parameters. The solvent effect was taken into account in the PCM approximation. The calculated 1H and 13C NMR chemical shifts of 2-methyl-2,3,4,5-tetrahydro-1H-[1]-benzothieno[2,3-c]azepine are in good agreement with the experimental values observed in the spectra of its DMSO-d6 solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Scheme 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Zappalà, M, Postorino, G., Micale, N., Caccamese, S., Parrinello, N., Grazioso, G., Roda, G., Menniti, F.S., De Sarro, G., and Grasso, S., J. Med. Chem., 2006, vol. 49, p. 575. https://doi.org/10.1021/jm050552y

    Article  CAS  PubMed  Google Scholar 

  2. Grasso, S., De Sarro, G., De Sarro, A., Micale, N., Polimeni, S., Zappalà, M, Puia, G., Baraldi, M., and De Micheli, C., Bioorg. Med. Chem. Lett., 2001, vol. 11, p. 463. https://doi.org/10.1016/s0960-894x(00)00693-4

    Article  CAS  PubMed  Google Scholar 

  3. Qneibi, M, Jaradat, N., Hawash, M., Olgac, A., and Emwas, N., ACS Omega, 2020, vol. 5, p. 3588. https://doi.org/10.1021/acsomega.9b04000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Espahbodinia, M., Ettari, R., Wen, W., Wu, A., Shen, Yu-Ch., Niu, L., Grasso, S., and Zappalà, M., Bioorg. Med. Chem., 2017, vol. 25, p. 3631. https://doi.org/10.1016/j.bmc.2017.05.036

    Article  CAS  PubMed  Google Scholar 

  5. Luszczki, J.J., Pharmacol. Rep., 2009, vol. 61, p. 197. https://doi.org/10.1016/s1734-1140(09)70024-6

    Article  CAS  PubMed  Google Scholar 

  6. Iwamoto, F.M., Kreisl, T.N., Kim, L., Duic, J.P., Butman, J.A., Albert, P.S., and Fine, H.A., Cancer, 2010, vol. 116, p. 1776. https://doi.org/10.1002/cncr.24957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Földesi, T., Volk, B., and Milen, M., Curr. Org. Synth., 2018, vol. 15, p. 729. https://doi.org/10.2174/1570179415666180601101856

    Article  CAS  Google Scholar 

  8. Muratov, A.V., Eresko, A.B., Tolkunov, V.S., and Tolkunov, S.V., Russ. J. Org. Chem., 2019, vol. 55, p. 345. https://doi.org/10.1134/S1070428019030126

    Article  CAS  Google Scholar 

  9. Muratov, A.V., Grebenyuk, S.A., and Eresko, A.B., Russ. J. Org. Chem., 2018, vol. 54, p. 861. https://doi.org/10.1134/S1070428018060064

    Article  CAS  Google Scholar 

  10. Zubenko, A.A., Morkovnik, A.S., Divaeva, L.N., Kartsev, V.G., Anisimov, A.A., and Suponitsky, K.Yu., Russ. J. Org. Chem., 2019, vol. 55, p. 74. https://doi.org/10.1134/S1070428019010081

    Article  CAS  Google Scholar 

  11. Chaban, T.I., Matiichuk, Y.E., Horishny, V.Ya., Chaban, I.G., and Matiychuk, V. S., Russ. J. Org. Chem., 2020, vol. 56, p. 813. https://doi.org/10.1134/S1070428020050139

    Article  CAS  Google Scholar 

  12. Burkamp, F. and Fletcher, S.R., J. Heterocycl. Chem., 2002, vol. 39, p. 1177. https://doi.org/10.1002/jhet.5570390611

    Article  CAS  Google Scholar 

  13. Anderson, D.R., Meyers, M.J., Kurumbail, R.G., Caspers, N., Poda, G.I., Long, S.A., Pierce, B.S., Mahoney, M.W., and Mourey, R.J., Bioorg. Med. Chem. Lett., 2009, vol. 19, p. 4878. https://doi.org/10.1016/j.bmcl.2009.02.015

    Article  CAS  PubMed  Google Scholar 

  14. Tolkunov, V.S., Eresko, A.B., Mazepa, A.V., and Tolkunov, V.S., Chem. Heterocycl. Compd., 2011, vol. 47, p. 1170. https://doi.org/10.1007/s10593-011-0888-8

    Article  CAS  Google Scholar 

  15. Marvin 5.10.4, ChemAxon, Calculator Plugins, 2014, http://www.chemaxon.com

  16. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A., Peralta, J.E. Jr., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Keith, T., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., Cioslowski, J., and Fox, D.J., Gaussian 09, Revision B.01, Gaussian, Inc., Wallingford CT, 2010.

  17. Lam, P.C.-H. and Carlier, P.R., J. Org. Chem., 2005, vol. 70, p. 1530. https://doi.org/10.1021/jo048450n

    Article  CAS  PubMed  Google Scholar 

  18. Ramig, K., Greer, E.M., Szalda, D.J., Karimi, S., Ko, A., Boulos, L., Gu, J., Dvorkin, N., Bhramdat, H., and Subramaniam, G., J. Org. Chem., 2013, vol. 78, p. 8028. https://doi.org/10.1021/jo4013089

    Article  CAS  PubMed  Google Scholar 

  19. Ramig, K., Subramaniam, G., Karimi, S., Szalda, D.J., Ko, A., Lam, A., Li, J., Coaderaj, A., Cavdar, L., Bogdan, L., Kwon, K., and Greer, E.M., J. Org. Chem., 2016, vol. 81, p. 3313. https://doi.org/10.1021/acs.joc.6b00319

    Article  CAS  PubMed  Google Scholar 

  20. Becke, A.D., J. Chem. Phys., 1993, vol. 98, p. 5648. https://doi.org/10.1063/1.464913

    Article  CAS  Google Scholar 

  21. Lee, C., Yang, W., and Parr, R.G., Phys. Rev. B, 1988, vol. 37, p. 785. https://doi.org/10.1103/physrevb.37.785

    Article  CAS  Google Scholar 

  22. Lee, T.J. and Taylor, P.R., Int. J. Quantum Chem., Quant. Chem. Symp., 1989, vol. 36, p. 199. https://doi.org/10.1002/qua.560360824

    Article  Google Scholar 

  23. Mennucci, B. and Tomasi, J., J. Chem. Phys., 1997, vol. 106, p. 5151. https://doi.org/10.1063/1.473558

    Article  CAS  Google Scholar 

  24. Belaykov, P.A. and Ananikov, V.P., Russ. Chem. Bull., 2011, vol. 60, p. 783. https://doi.org/10.1007/s11172-011-0125-8

    Article  CAS  Google Scholar 

  25. Wolinski, K., Hilton, J.F., and Pulay, P., J. Am. Chem. Soc., 1990, vol. 112, p. 8251. https://doi.org/10.1021/ja00179a005

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Eresko.

Ethics declarations

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eresko, A.B., Raksha, E.V., Berestneva, Y.V. et al. Synthesis, NMR Spectroscopy, and Molecular Modeling of 2-Methyl-2,3,4,5-tetrahydro-1H-[1]benzothieno[2,3-c]azepine. Russ J Org Chem 56, 1929–1936 (2020). https://doi.org/10.1134/S1070428020110068

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070428020110068

Keywords:

Navigation