Skip to main content
Log in

A review of current LME test methods and suggestions for developing a standardized test procedure

  • Research Paper
  • Published:
Welding in the World Aims and scope Submit manuscript

Abstract

To improve automotive fuel economy, automobile manufacturers are minimizing the weight of the body-in-white. To do this, they are adopting new 3rd generation advanced high strength steels that have excellent strength and ductility. However, these steels are also prone to liquid metal embrittlement (LME) cracking; intergranular cracks caused by molten zinc, from the galvanized coating, penetrating the steel substrate during the resistance spot welding (RSW) process. These cracks are not acceptable to automobile manufacturers as it is unknown how LME cracks affect joint strength during weld service. To decrease LME cracking, extensive research into understanding its governing metallurgy, optimizing welding parameters, and comparing the LME sensitivity of multiple grades has been done. Most of this work was done using hot-tension testing or RSW testing. However, as there is no standard methodology for these tests, producing results that were difficult to compare. This review examined test methodologies for hot-tension and RSW testing LME severity. It was determined that the usefulness of LME testing could be improved if test methods reflected the temperature and stress-state of the welding process, facilitated comparisons between tests, and quantified results were reported. Recommendations are provided to improve hot-tension and RSW tests to meet these goals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Keith DR, Houston S, Naumov S (2019) Vehicle fleet turnover and the future of fuel economy. Environ Res Lett 14:021001. https://doi.org/10.1088/1748-9326/aaf4d2

    Article  Google Scholar 

  2. Koffler C, Rohde-Brandenburger K (2010) On the calculation of fuel savings through lightweight design in automotive life cycle assessments. Int J Life Cycle Assess 15:128–135. https://doi.org/10.1007/s11367-009-0127-z

    Article  CAS  Google Scholar 

  3. Berger L, Lesemann M, Sahr C (2009) SuperLIGHT-CAR–the multi-material car body. In: 7th European LS-DYNA Conference. Stuttgart, pp. 1–10

  4. Taub A, De Moor E, Luo A et al (2019) Materials for automotive lightweighting. Annu Rev Mater Res 49:327–359. https://doi.org/10.1146/annurev-matsci-070218-010134

    Article  CAS  Google Scholar 

  5. Keeler S, Kimchi M, Mooney PJ (2017) Advanced high-strength steels application guidelines version 6.0. Brussels

  6. Bhattacharya D (2018) Liquid metal embrittlement during resistance spot welding of Zn-coated high-strength steels. Mater Sci Technol 34:1809–1829. https://doi.org/10.1080/02670836.2018.1461595

    Article  CAS  Google Scholar 

  7. Ling Z, Chen T, Kong L, Wang M, Pan H, Lei M (2019) Liquid metal embrittlement cracking during resistance spot welding of galvanized Q&P980 steel. Metall Mater Trans A Phys Metall Mater Sci 50:5128–5142. https://doi.org/10.1007/s11661-019-05388-6

    Article  CAS  Google Scholar 

  8. Ling Z, Chen T, Wang M, Kong L (2020) Reducing liquid metal embrittlement cracking in resistance spot welding of Q & P980 steel. Mater Manuf Process 35:1392–1399. 1–8. https://doi.org/10.1080/10426914.2020.1779935

    Article  CAS  Google Scholar 

  9. Tumuluru M (2019) Effect of silicon and retained austenite on the liquid metal embrittlement cracking behavior of GEN3 and high-strength automotive steels. Weld J 98:351S–364S. https://doi.org/10.29391/2019.98.029

    Article  Google Scholar 

  10. Choi DY, Sharma A, Uhm SH, Jung JP (2019) Liquid metal embrittlement of resistance spot welded 1180 TRIP steel: effect of electrode force on cracking behavior. Met Mater Int 25:219–228. https://doi.org/10.1007/s12540-018-0180-x

    Article  CAS  Google Scholar 

  11. DiGiovanni C, Bag S, Mehling C, Choi KW, Macwan A, Biro E, Zhou NY (2019) Reduction in liquid metal embrittlement cracking using weld current ramping. Weld World 63:1583–1591. https://doi.org/10.1007/s40194-019-00790-5

    Article  CAS  Google Scholar 

  12. Benlatreche Y, Ghassemi-Armaki H, Duchet M, et al (2017) Spot-weld integrity of Zn-coated 3rd Gen. advanced high strength steels in presence of LME. In: International Automotive Body Congress, IABC 2017 DEARBORN - Papers. Dearborn

  13. Wintjes E, DiGiovanni C, He L, Biro E, Zhou NY (2019) Quantifying the link between crack distribution and resistance spot weld strength reduction in liquid metal embrittlement susceptible steels. Weld World 63:807–814. https://doi.org/10.1007/s40194-019-00712-5

    Article  CAS  Google Scholar 

  14. Kim YG, Kim IJ, Kim JS, Chung YI, Choi DY (2014) Evaluation of surface crack in resistance spot welds of zn-coated steel. Mater Trans 55:171–175. https://doi.org/10.2320/matertrans.M2013244

    Article  CAS  Google Scholar 

  15. Tolf E, Hedegård J, Melander A (2012) Surface breaking cracks in resistance spot welds of dual phase steels with electrogalvanised and hot dip zinc coating. Sci Technol Weld Join 18:25–31. https://doi.org/10.1179/1362171812Y.0000000068

    Article  CAS  Google Scholar 

  16. American Welding Society (2013) D8.1M:2013 specification for automotive weld quality resistance spot welding of steel. American Welding Society, Miami

    Google Scholar 

  17. Meschut G, Böhne C, Rethmeier M, et al (2020) AHSS Implementation Solutions-LME Program. Brussels

  18. DiGiovanni C, Han X, Powell A, Biro E, Zhou NY (2019) Experimental and numerical analysis of liquid metal embrittlement crack location. J Mater Eng Perform 28:2045–2052. https://doi.org/10.1007/s11665-019-04005-2

    Article  CAS  Google Scholar 

  19. Choi D-Y, Uhm S-H, Enloe CM, et al (2017) Liquid Metal embrittlement of resistance spot welded 1180TRIP steel-effects of crack geometry on weld mechanical performance. In: Materials Science and Technology. pp. 454–462

  20. Razmpoosh MH, Macwan A, Goodwin F, Biro E, Zhou Y (2020) Role of random and coincidence site lattice grain boundaries in liquid metal embrittlement of iron (FCC)-Zn couple. Metall Mater Trans A Phys Metall Mater Sci 51:3938–3944. https://doi.org/10.1007/s11661-020-05857-3

    Article  CAS  Google Scholar 

  21. Sierlinger R, Gruber M (2017) A cracking good story about liquid metal embrittlement during spot welding of advanced high strength steels. In: 5th International Conference on Steels in Cars and Trucks. Amsterdam-Schipol, pp. 1–15

  22. Hong SH, Kang JH, Kim D, Kim SJ (2020) Si effect on Zn-assisted liquid metal embrittlement in Zn-coated TWIP steels: importance of Fe-Zn alloying reaction. Surf Coat Technol 393:125809. https://doi.org/10.1016/j.surfcoat.2020.125809

    Article  CAS  Google Scholar 

  23. Kang H, Cho L, Lee C, De Cooman BC (2016) Zn penetration in liquid metal embrittled TWIP steel. Metall Mater Trans A 47:2885–2905. https://doi.org/10.1007/s11661-016-3475-x

    Article  CAS  Google Scholar 

  24. Jeon W, Sharma A, Jung JP (2020) Liquid metal embrittlement of galvanized TRIP steels in resistance spot welding. Metals (Basel) 10:787–809

    Article  CAS  Google Scholar 

  25. Murugan SP, Kim J, Kim J, Wan Y, Lee C, Jeon JB, Park YD (2020) Surface & Coatings Technology. Role of liquid Zn and α-Fe (Zn) on liquid metal embrittlement of medium Mn steel: an ex-situ microstructural analysis of galvannealed coating during high temperature tensile test. Surf Coat Technol 398:126069. https://doi.org/10.1016/j.surfcoat.2020.126069

    Article  CAS  Google Scholar 

  26. Wintjes E, DiGiovanni C, He L, Bag S, Goodwin F, Biro E, Zhou Y (2019) Effect of multiple pulse resistance spot welding schedules on liquid metal embrittlement severity. J Manuf Sci Eng 141:101001. https://doi.org/10.1115/1.4044099

    Article  Google Scholar 

  27. Murugan SP, Mahmud K, Ji C, Jo I, Park YD (2019) Critical design parameters of the electrode for liquid metal embrittlement cracking in resistance spot welding. Weld World 63:1613–1632. https://doi.org/10.1007/s40194-019-00797-y

    Article  Google Scholar 

  28. Böhne C, Meschut G, Biegler M, Frei J, Rethmeier M (2020) Prevention of liquid metal embrittlement cracks in resistance spot welds by adaption of electrode geometry. Sci Technol Weld Join 25:303–310. https://doi.org/10.1080/13621718.2019.1693731

    Article  CAS  Google Scholar 

  29. Gaul H, Brauser S, Weber G, Rethmeier M (2011) Methods to obtain weld discontinuities in spot-welded joints made of advanced high-strength steels. Weld World 55:99–106. https://doi.org/10.1007/BF03321547

    Article  CAS  Google Scholar 

  30. Benlatreche Y, Dupuy T, Ghassemi-Armaki H, Lucchini L (2019) Methodology for liquid metal embrittlement (LME) evaluation of coated steels during spot welding. In: 72nd Annual Assembly of the International Institute of Welding. Bratislava, pp III-1959–19M

  31. Briant CL, Banerji SK (1978) Intergranular failure in steel: the role of grain-boundary composition. Int Met Rev 23:164–199. https://doi.org/10.1179/imtr.1978.23.1.164

    Article  CAS  Google Scholar 

  32. Razmpoosh MH, Biro E, Chen DL, Goodwin F, Zhou Y (2018) Liquid metal embrittlement in laser lap joining of TWIP and medium-manganese TRIP steel: the role of stress and grain boundaries. Mater Charact 145:627–633. https://doi.org/10.1016/j.matchar.2018.09.018

    Article  CAS  Google Scholar 

  33. Kang JH, Kim D, Kim DH, Kim SJ (2019) Fe-Zn reaction and its influence on microcracks during hot tensile deformation of galvanized 22MnB5 steel. Surf Coat Technol 357:1069–1075. https://doi.org/10.1016/j.surfcoat.2018.08.010

    Article  CAS  Google Scholar 

  34. Lei M, Pan H, Zuo D, et al (2019) Method of resistance spot welding of galvanized high-strength steel with good joint performance. 10

  35. Ashiri R, Shamanian M, Salimijazi HR, Haque MA, Bae JH, Ji CW, Chin KG, Park YD (2016) Liquid metal embrittlement-free welds of Zn-coated twinning induced plasticity steels. Scr Mater 114:41–47

    Article  CAS  Google Scholar 

  36. DiGiovanni C, He L, Pistek U, Goodwin F, Biro E, Zhou NY (2020) Role of spot weld electrode geometry on liquid metal embrittlement crack development. J Manuf Process 49:1–9. https://doi.org/10.1016/j.jmapro.2019.11.015

    Article  Google Scholar 

  37. Hou W, Cretteur L, Kelley S (2009) Effect of gap on AHSS RSW weldability. SAE Tech Pap 2009-01–0030. https://doi.org/10.4271/2009-01-0030

  38. American Welding Society (2012) AWS D8.9:2012 test methods for evaluating the resistance spot welding behavior of automotive sheet steel materials. American Welding Society, Miami

    Google Scholar 

  39. Verlag Stahleisen GmbH (2011) Testing and documentation guideline for the joinability of thin sheet of steel-part 2: resistance spot welding (SEP 1220-2). Düsseldorf

  40. European Committee for Standardization (2016) Resistance welding-weldability-part 2: evaluation procedures for weldability in spot welding (ISO 18278-2:2016). Geneva

  41. Karagoulis M (2019) Resistance spot welding-LME cracking susceptibility test procedure for coated sheet steels

  42. Fritzsche C (2019) Prüfmethoden zur Charakterisierung des Auftretens von LME beim Widerstandspunktschweißen von Stählen. In: 24. DVS-Sondertagung - Widerstandsschweissen 2019. Duisburg, 171–183

  43. Barthelmie J, Schram A, Wesling V (2016) Liquid metal embrittlement in resistance spot welding and hot tensile tests of surface-refined TWIP steels. IOP Conf Ser Mater Sci Eng 118:012002. https://doi.org/10.1088/1757-899X/118/1/012002

    Article  Google Scholar 

  44. Bhattacharya D, Cho L, van der Aa E, Ghassemi-Armaki H, Pichler A, Findley KO, Speer JG (2020) Transgranular cracking in a liquid Zn embrittled high strength steel. Scr Mater 175:49–54. https://doi.org/10.1016/j.scriptamat.2019.09.006

    Article  CAS  Google Scholar 

  45. Bhattacharya D, Cho L, Ghassemi-Armaki H, et al (2018) Quantitative assessment of the characteristics of liquid metal embrittlement during resistance spot welding of Zn-coated high-strength steels. In: Sheet Metal Welding Conference XVIII. Livonia, pp. 3A – 4

  46. He L (2020) Investigation of liquid metal embrittlement in advanced high strength steels. University of Waterloo

  47. Murugan SP, Kim J, Kim J, Wan Y, Lee C, Jeon JB, Park YD (2020) Role of liquid Zn and α-Fe(Zn) on liquid metal embrittlement of medium Mn steel: an ex-situ microstructural analysis of galvannealed coating during high temperature tensile test. Surf Coat Technol 398:126069. https://doi.org/10.1016/j.surfcoat.2020.126069

    Article  CAS  Google Scholar 

  48. Ponder K, Ramirez A, Ghassemi-Armaki H (2020) LME evaluation of 3rd Gen. advanced high strength sheet steels. In: Joining in Car Body Engineering 2020. Detroit

  49. Massie DJW (2019) Investigation of influencing factors in liquid metal embrittlement of advanced high strength steel. University of Alabama

  50. Kim D, Kang JH, Kim SJ (2018) Heating rate effect on liquid Zn-assisted embrittlement of high Mn austenitic steel. Surf Coat Technol 347:157–163. https://doi.org/10.1016/j.surfcoat.2018.04.081

    Article  CAS  Google Scholar 

  51. Kang JH, Hong SH, Kim J, Kim SJ (2020) Zn-induced liquid metal embrittlement of galvanized high-Mn steel: strain-rate dependency. Mater Sci Eng A 793:139996. https://doi.org/10.1016/j.msea.2020.139996

    Article  CAS  Google Scholar 

  52. Beal C (2012) Mechanical behaviour of a new automotive high manganese TWIP steel in the presence of liquid zinc. INSA de Lyon

  53. Jung G, Woo IS, Suh DW, Kim SJ (2016) Liquid Zn assisted embrittlement of advanced high strength steels with different microstructures. Met Mater Int 22:187–195. https://doi.org/10.1007/s12540-016-5579-7

    Article  CAS  Google Scholar 

  54. Beal C, Kleber X, Fabregue D, Bouzekri M (2012) Liquid zinc embrittlement of twinning-induced plasticity steel. Scr Mater 66:1030–1033. https://doi.org/10.1016/j.scriptamat.2011.12.040

    Article  CAS  Google Scholar 

  55. Frappier R, Paillard P, Le Gall R, Dupuy T (2014) Embrittlement of steels by liquid zinc: crack propagation after grain boundary wetting. Adv Mater Res 922:161–166. https://doi.org/10.4028/www.scientific.net/AMR.922.161

    Article  CAS  Google Scholar 

  56. Zou DQ, Li SH, He J (2017) Temperature and strain rate dependent deformation induced martensitic transformation and flow behavior of quenching and partitioning steels. Mater Sci Eng A 680:54–63. https://doi.org/10.1016/j.msea.2016.10.083

    Article  CAS  Google Scholar 

  57. Schijve J (2009) Stress intensity factors of cracks. In: Fatigue of structures and materials, 2nd ed. Springer, pp 105–140

  58. Dohie JS, Cahoon JR, Caley WF (2007) The grain-boundary diffusion of Zn in α-Fe. J Phase Equilib Diffus 28:322–327. https://doi.org/10.1007/s11669-007-9093-y

    Article  CAS  Google Scholar 

  59. Beal C, Kleber X, Fabregue D, Bouzekri M (2012) Embrittlement of a zinc coated high manganese TWIP steel. Mater Sci Eng A 543:76–83. https://doi.org/10.1016/j.msea.2012.02.049

    Article  CAS  Google Scholar 

  60. Sigler DR, Schroth JG, Yang W, et al (2008) Observations of liquid metal-assisted cracking in resistance spot welds of zinc-coated advanced high-strength steels. In: Sheet Metal Welding Conference XIII. Livonia, MI, pp. 1–1

  61. Benlatreche Y, Dupuy T, Ghassemi-armaki H, Lucchini L (2019) Methodology for liquid metal embrittlement (LME) evaluation of coated steels during spot welding. In: The 72nd annual assembly of the International Institute of Welding (IIW). Bratislava

  62. International Organization for Standardization (2009) Resistance welding-spot welding electrode caps ISO 5821:2009(E). Geneva

  63. Beal C, Kleber X, Fabregue D, Bouzekri M (2011) Liquid zinc embrittlement of a high-manganese-content TWIP steel. Philos Mag Lett 91:297–303. https://doi.org/10.1080/09500839.2011.559177

    Article  CAS  Google Scholar 

  64. Ashiri R, Haque MA, Ji C-W, shamanian M, Salimijazi HR, Park YD (2015) Supercritical area and critical nugget diameter for liquid metal embrittlement of Zn-coated twining induced plasticity steels. Scr Mater 109:6–10. https://doi.org/10.1016/j.scriptamat.2015.07.006

    Article  CAS  Google Scholar 

  65. Ashiri R, Mostaan H, Do PY (2018) A phenomenological study of weld discontinuities and defects in resistance spot welding of advanced high strength TRIP steel. Metall Mater Trans A Phys Metall Mater Sci 49:6161–6172. https://doi.org/10.1007/s11661-018-4900-0

    Article  CAS  Google Scholar 

  66. Safanama DS, Marashi SPH, Pouranvari M (2012) Similar and dissimilar resistance spot welding of martensitic advanced high strength steel and low carbon steel: metallurgical characteristics and failure mode transition. Sci Technol Weld Join 17:288–294. https://doi.org/10.1179/1362171812Y.0000000006

    Article  CAS  Google Scholar 

  67. Myzaud Y, Parnière P (1974) Etude du Recuit des Tôles mince d’acier extra-doux par résistivité électrique. Mémoires Sci Rev Métallurgie 71:415–422

    Google Scholar 

  68. Frei J, Rethmeier M (2018) Susceptibility of electrolytically galvanized dual-phase steel sheets to liquid metal embrittlement during resistance spot welding. Weld World 62:1031–1037. https://doi.org/10.1007/s40194-018-0619-1

    Article  CAS  Google Scholar 

  69. Frei J, Biegler M, Rethmeier M, Böhne C, Meschut G (2019) Investigation of liquid metal embrittlement of dual phase steel joints by electro-thermomechanical spot-welding simulation. Sci Technol Weld Join 24:624–633. https://doi.org/10.1080/13621718.2019.1582203

    Article  CAS  Google Scholar 

  70. Murugan S, Mahmud K, Park Y-D (2018) The influence of electrode geometry on liquid metal embrittlement cracking in resistance spot welding of advanced high strength steel. In: International Insititute of Welding Annual Meeting. Bali, Indonesia, pp III-1876–18

  71. Choi D, Uhm S, Enloe C et al (2018) Liquid metal embrittlement of resistance spot welded 1180TRIP steel-effects of crack geometry on weld mechanical performance. In: In: Contributed Papers from Materials Science and Technology 2017 (MS&T17). MS&T17, Pittsburg, pp 454–462

    Google Scholar 

  72. Takahashi M, Nakata M, Imai K, Kojima N, Otsuka N (2017) Liquid metal embrittlement of hot stamped galvannealed boron steel sheet-effect of heating time on crack formation. ISIJ Int 57:1094–1101. https://doi.org/10.2355/isijinternational.ISIJINT-2016-730

    Article  CAS  Google Scholar 

  73. Yang YP, Gould J, Peterson W, Orth F, Zelenak P, al-Fakir W (2013) Development of spot weld failure parameters for full vehicle crash modelling. Sci Technol Weld Join 18:222–231. https://doi.org/10.1179/1362171812Y.0000000082

    Article  Google Scholar 

Download references

Funding

This work was funded by a Discovery Grant provided by the Natural Sciences and Engineering Research Council of Canada (NSERC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Biro.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Recommended for publication by Commission III - Resistance Welding, Solid State Welding, and Allied Joining Process

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

DiGiovanni, C., Biro, E. A review of current LME test methods and suggestions for developing a standardized test procedure. Weld World 65, 865–884 (2021). https://doi.org/10.1007/s40194-020-01050-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40194-020-01050-7

Keywords

Navigation